首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have observed a three-dimensional gyroscopic effect associated with a vortex in a dilute Bose-Einstein condensed gas. A condensate with a vortex possesses a single quantum of circulation, and this causes the plane of oscillation of the scissors mode to precess around the vortex line. We have measured the precession rate of the scissors oscillation. From this we deduced the angular momentum associated with the vortex line and found a value close to Planck's over 2pi per particle, as predicted for a superfluid.  相似文献   

2.
We study the dynamics of an atomic quantum dot, i.e., a single atom in a tight optical trap which is coupled to a superfluid reservoir via laser transitions. Quantum interference between the collisional interactions and the laser induced coupling results in a tunable dot-bath coupling, allowing an essentially complete decoupling from the environment. Quantum dots embedded in a 1D Luttinger liquid of cold bosonic atoms realize a spin-boson model with Ohmic coupling, which exhibits a dissipative phase transition and allows us to directly measure atomic Luttinger parameters.  相似文献   

3.
We derive via diagrammatic perturbation theory the scaling behavior of the condensate and superfluid mass density of a dilute Bose gas just below the condensation temperature, T(c). Sufficiently below T(c) particle excitations are described by mean field (Bogoliubov). Near T(c), however, mean field fails, and the system undergoes a second order phase transition, rather than first order as predicted by Bogoliubov theory. Both condensation and superfluidity occur at the same T(c), and have similar scaling functions below T(c), but different finite size scaling at T(c) to leading order in the system size. A self-consistent two-loop calculation yields the condensate fraction critical exponent, 2beta approximately 0.66.  相似文献   

4.
We study the way in which the geometry of the trapping potential affects the vortex velocity in a Bose-Einstein condensate confined by a toroidal trap. We calculate the vortex precession velocity through a simple relationship between such a velocity and the gradient of the numerically obtained vortex energy. We observe that our results correspond very closely to the velocity calculated through time evolution simulations. However, we find that the estimates derived from available velocity field formulas present appreciable differences. To resolve such discrepancies, we further study the induced velocity field, analyzing the effect of global features of the condensate on such a field and on the precession velocity.  相似文献   

5.
We propose a method to create macroscopic superpositions, so-called Schr?dinger cat states, of different motional states of an ideal Bose-Einstein condensate. The scheme is based on the scattering of a freely expanding condensate by the light field of a high-finesse optical cavity in a quantum superposition state of different photon numbers. The atom-photon interaction creates an entangled state of the motional state of the condensate and the photon number, which can be converted into a pure atomic Schr?dinger cat state by operations only acting on the cavity field. We discuss in detail the fully quantised theory and propose an experimental procedure to implement the scheme using short coherent light pulses. Received 26 June 2000 and Received in final form 2nd October 2000  相似文献   

6.
We demonstrate a precise magnetic microscope based on direct imaging of the Larmor precession of a 87Rb spinor Bose-Einstein condensate. This magnetometer attains a field sensitivity of 8.3 pT/Hz1/2 over a measurement area of 120 microm2, an improvement over the low-frequency field sensitivity of modern SQUID magnetometers. The achieved phase sensitivity is close to the atom shot-noise limit, estimated as 0.15 pT/Hz1/2 for a unity duty cycle measurement, suggesting the possibilities of spatially resolved spin-squeezed magnetometry. This magnetometer marks a significant application of degenerate atomic gases to metrology.  相似文献   

7.
We investigate Bose-Einstein condensation of noninteracting gases in a harmonic trap with an offcenter dimple potential. We specifically consider the case of a tight and deep dimple potential, which is modeled by a point interaction. This point interaction is represented by a Dirac delta function. The atomic density, chemical potential, critical temperature and condensate fraction, and the role of the relative depth and the position of the dimple potential are analyzed by performing numerical calculations.  相似文献   

8.
The spatial self-organization of a Bose-Einstein condensate (BEC) in a high-finesse linear optical cavity is discussed. The condensate atoms are laser-driven from the side and scatter photons into the cavity. Above a critical pump intensity the homogeneous condensate evolves into a stable pattern bound by the cavity field. The transition point is determined analytically from a mean-field theory. We calculate the lowest lying Bogoliubov excitations of the coupled BEC-cavity system and the quantum depletion due to the atom-field coupling.  相似文献   

9.
We have created a long-lived (≈40 s) persistent current in a toroidal Bose-Einstein condensate held in an all-optical trap. A repulsive optical barrier across one side of the torus creates a tunable weak link in the condensate circuit, which can affect the current around the loop. Superflow stops abruptly at a barrier strength such that the local flow velocity at the barrier exceeds a critical velocity. The measured critical velocity is consistent with dissipation due to the creation of vortex-antivortex pairs. This system is the first realization of an elementary closed-loop atom circuit.  相似文献   

10.
11.
We demonstrate the operation of an atom interferometer based on a weakly interacting Bose-Einstein condensate. We strongly reduce the interaction induced decoherence that usually limits interferometers based on trapped condensates by tuning the s-wave scattering length almost to zero via a magnetic Feshbach resonance. We employ a 39K condensate trapped in an optical lattice, where Bloch oscillations are forced by gravity. The fine-tuning of the scattering length down to 0.1 a_(0) and the micrometric sizes of the atomic sample make our system a very promising candidate for measuring forces with high spatial resolution. Our technique can be in principle extended to other measurement schemes opening new possibilities in the field of trapped atom interferometry.  相似文献   

12.
We study thermodynamic properties of a gas of spin 3(52)Cr atoms across Bose-Einstein condensation. Magnetization is free, due to dipole-dipole interactions. We show that the critical temperature for condensation is lowered at extremely low magnetic fields, when the spin degree of freedom is thermally activated. The depolarized gas condenses in only one spin component, unless the magnetic field is set below a critical value, below which a nonferromagnetic phase is favored. Finally, we present a spin thermometry efficient even below the degeneracy temperature.  相似文献   

13.
An attractive Bose-Einstein condensate with a vortex splits into two pieces via the quadrupole dynamical instability, which arises at a weaker strength of interaction than the monopole and the dipole instabilities. The split pieces subsequently unite to restore the original vortex or collapse.  相似文献   

14.
We find numerically that in the limit of weak atom-atom interactions a Bose-Einstein condensate in an optical lattice may develop a pulsating dynamical instability in which the atoms nearly periodically form a peak in the occupation numbers of the lattice sites, and then return to the unstable initial state. Multiple peaks behaving similarly are also found. Simple arguments show that the pulsating instability is a remnant of integrability, and give a handle on the relevant physical scales.  相似文献   

15.
We study the effect of a one dimensional optical superlattice on the superfluid properties (superfluid fraction, number squeezing, dynamic structure factor) and the quasi-momentum distribution of the Mott-insulator. We show that due to the secondary lattice, there is a decrease in the superfluid fraction and the number fluctuation. The dynamic structure factor which can be measured by Bragg spectroscopy is also suppressed due to the addition of the secondary lattice. The visibility of the interference pattern (the quasi-momentum distribution) of the Mott-insulator is found to decrease due to the presence of the secondary lattice. Our results have important implications in atom interferometry and quantum computation in optical lattices.  相似文献   

16.
17.
R. Paredes 《Laser Physics》2006,16(12):1714-1721
We study the dynamics of an ultracold interacting Bose-Einstein gas confined in a one-dimensional potential composed of three symmetrical wells. We numerically solve the time-dependent Schrödinger equation of the N-particle Hamiltonian for N = 50, 150, 500, 1000. We demonstrate that the quantum phase transition from a superfluid (SF) to a Mott insulator (MI) phase in the three-well potential depends on the strength of the interactions among the particles, the total number of particles, and the confining potential in which the particles move. We discuss the appearance of population revivals as a function of time and find that, even in the case when the interaction strength among the particles is very small, its effect has the consequence that the system never returns to the initial condition. A stationary state for long times is observed in the SF phase, while the particle population in each well remains almost equal to the initial condition in the MI phase.  相似文献   

18.
We study a Bose-Einstein condensate in a one-dimensional accelerated optical lattice using the mean-field version of the Bose-Hubbard model. Reminiscent of recent experiments [M. Cristiani et al., Opt. Express 12, 4 (2004)], we find a new type of an instability in this system that occurs in the limit when the acceleration is small.  相似文献   

19.
We study the density modulation that appears in a Bose-Einstein condensate flowing with supersonic velocity against an obstacle. The experimental density profiles observed at JILA are reproduced by a numerical integration of the Gross-Pitaevskii equation and then interpreted in terms of Cerenkov emission of Bogoliubov excitations by the defect. The phonon and the single-particle regions of the Bogoliubov spectrum are, respectively, responsible for a conical wave front and a fan-shaped series of precursors.  相似文献   

20.
We study the expansion of an atomic Fermi gas interacting attractively with a Bose-Einstein condensate. We observe a slower evolution of the radial-to-axial aspect ratio which reveals the importance of the mutual attraction between the two samples during the first phase of the expansion. For large atom numbers, we also observe a bimodal momentum distribution of the Fermi gas, which reflects the spatial distribution of the mixture in trap. This effect allows us to extract important information on the overlap of the two species across the collapse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号