首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We study a lattice model of attractive colloids. It is exactly solvable on sparse random graphs. As the pressure and temperature are varied, it reproduces many characteristic phenomena of liquids, glasses, and colloidal systems such as ideal gel formation, liquid-glass phase coexistence, jamming, or the re-entrance of the glass transition.  相似文献   

2.
Colloidal silica gels are shown to stiffen with time, as demonstrated by both dynamic light scattering and bulk rheological measurements. Their elastic moduli increase as a power law with time, independent of particle volume fraction; however, static light scattering indicates that there are no large-scale structural changes. We propose that increases in local elasticity arising from bonding between neighboring colloidal particles can account for the strengthening of the network, while preserving network structure.  相似文献   

3.
We present a unified framework for understanding the compaction of colloidal gels under their own weight. The dynamics of the collapse are determined by the value of the gravitational stress sigma(g), as compared to the yield stress sigma(Y) of the network. For sigma(g)sigma(Y), the network eventually yields, leading to rapid settling. In both cases, the rate of collapse is backflow limited, while its overall magnitude is determined by a balance between gravitational stress and network elastic stress.  相似文献   

4.
We study the compression of depletion gels under the influence of a gravitational stress by monitoring the time evolution of the gel interface and the local volume fraction, , inside the gel. We find is not constant throughout the gel. Instead, there is a volume fraction gradient that develops and grows along the gel height as the compression process proceeds. Our results are correctly described by a non-linear poroelastic model that explicitly incorporates the -dependence of the gravitational, elastic and viscous stresses acting on the gel.  相似文献   

5.
We use molecular dynamics computer simulations to investigate the relaxation dynamics of a simple model for a colloidal gel at a low volume fraction. We find that due to the presence of the open spanning network this dynamics shows at low temperature a nontrivial dependence on the wave vector which is very different from the one observed in dense glass-forming liquids. At high wave vectors the relaxation is due to the fast cooperative motion of the branches of the gel network, whereas at low wave vectors the overall rearrangements of the heterogeneous structure produce the relaxation process.  相似文献   

6.
7.
Star polymers with a high number of arms, f=263, become kinetically trapped when dispersed in an athermal solvent at concentrations above the overlapping one, forming physical gels. We show that the addition of linear chains at different concentrations and molecular weights reduces the modulus of the gel, eventually melting it. We explain this linear polymer-induced gel-liquid transition in terms of effective interactions and star depletion. In the limit of very high linear-chain molecular weight a "reentrant gelation" is detected and attributed to bridging flocculation, analogous to that observed in colloidal dispersions.  相似文献   

8.
We directly probe the microscopic structure, connectivity, and elasticity of colloidal gels using confocal microscopy. We show that the gel is a random network of one-dimensional chains of particles. By measuring thermal fluctuations, we determine the effective spring constant between pairs of particles as a function of separation; this is in agreement with the theory for fractal chains. Long-range attractions between particles lead to freely rotating bonds, and the gel is stabilized by multiple connections among the chains. By contrast, short-range attractions lead to bonds that resist bending, with dramatically suppressed formation of loops of particles.  相似文献   

9.
Colloids near the glass concentration are often taken as models for molecular glasses. Yet, an important aspect of the dynamics of molecular glasses, structural recovery, has not been elucidated in colloids. We take advantage of a thermosensitive colloidal suspension to study the structural recovery after concentration jumps by using diffusing wave spectroscopy. The three classical aging signatures observed in molecular glasses are studied and the results are compared with those typical of molecular glasses. For the intrinsic isotherms, unlike molecular glasses, the colloid shows huge changes in relaxation time at equilibrium while the times required to reach the equilibrium state are nearly constant. For asymmetry of approach, we find a similar nonlinearity to that observed in the molecular glasses. For the memory experiment, while a memory effect is seen, the response is qualitatively different from that in molecular glasses.  相似文献   

10.
In concentrated colloidal mixtures different caging mechanisms exist and result in different arrested states: repulsive, attractive and asymmetric glasses as well as gel-like states. We discuss their microscopic structure, dynamics and rheological response. Special attention is given to the non-linear mechanical behaviour, in particular the transient rheological response after shear is started. Steps in both, shear rate and shear stress (creep test), are considered. The macroscopic viscoelastic response is related to the microscopic structure and dynamics on the individual-particle level.  相似文献   

11.
We report experiments on hard-sphere colloidal glasses that show a type of shear banding hitherto unobserved in soft glasses. We present a scenario that relates this to an instability due to shear-concentration coupling, a mechanism previously thought unimportant in these materials. Below a characteristic shear rate γ(c) we observe increasingly nonlinear and localized velocity profiles. We attribute this to very slight concentration gradients in the unstable flow regime. A simple model accounts for both the observed increase of γ(c) with concentration, and the fluctuations in the flow.  相似文献   

12.
Glasses behave as solids on experimental time scales due to their slow relaxation. Growing dynamic length scales due to cooperative motion of particles are believed to be central to this slow response. For quiescent glasses, however, the size of the cooperatively rearranging regions has never been observed to exceed a few particle diameters, and the observation of long-range correlations has remained elusive. Here, we provide direct experimental evidence of long-range correlations during the deformation of a dense colloidal glass. By imposing an external stress, we force structural rearrangements, and we identify long-range correlations in the fluctuations of microscopic strain and elucidate their scaling and spatial symmetry. The applied shear induces a transition from homogeneous to inhomogeneous flow at a critical shear rate, and we investigate the role of strain correlations in this transition.  相似文献   

13.
Using fast confocal microscopy we image the three-dimensional dynamics of particles in a yielded hard-sphere colloidal glass under steady shear. The structural relaxation, observed in regions with uniform shear, is nearly isotropic but is distinctly different from that of quiescent metastable colloidal fluids. The inverse relaxation time tau(alpha)(-1) and diffusion constant D, as functions of the local shear rate gamma*, show marked shear thinning with tau(alpha)(-1) proportional to D proportional to gamma*(0.8) over more than two decades in gamma*. In contrast, the global rheology of the system displays Herschel-Bulkley behavior. We discuss the possible role of large scale shear localization and other mechanisms in generating this difference.  相似文献   

14.
The influence of gravity on the long-time behavior of the mean squared displacement in glasses of polydisperse colloidal hard spheres was studied by means of real-space fluorescent recovery after photobleaching. We present, for the first time, a significant influence of gravity on the mean squared displacements of the particles. In particular, we observe that systems which are glasses under gravity (with a gravitational length on the order of tens of micrometers) show anomalous diffusion over several decades in time if the gravitational length is increased by an order of magnitude. No influence of gravity was observed in systems below the glass transition density. We show that this behavior is caused by gravity dramatically accelerating aging in colloidal hard sphere glasses. This behavior explains the observation that colloidal hard sphere systems which are a glass on Earth rapidly crystallize in space.  相似文献   

15.
We report molecular dynamics simulations of water confined in a cylindrical silica pore. The pore geometry and size is similar to that of typical pores in porous Vycor glass. In the present study we focus on the dependence of microscopical structural and dynamical properties on the degree of hydration of the pore. We have performed five simulations of systems between 19 and 96 % hydration. In all cases, water adsorbs strongly on the pore surface, clearly demonstrating the hydrophilic nature of the Vycor surface. Two layers of water molecules are affected strongly by the interactions with the glass surface. With decreasing degree of hydration an increasing volume in the center of the pore is devoid of water molecules. At 96 % hydration the center is a continuous and homogeneous region that has, however, a lower density than bulk water at ambient conditions. A well-pronounced mobility profile exists, where molecules in the center of the pores have substantially higher self diffusion coefficients than molecules on the pore surface. The spectral densities of center of mass and hydrogen atom motion show the signature of confinement for the molecules close to the pore surface, while the spectral densities in the center of the pore are similar to those in bulk water. The molecular dynamics results are in good agreement with recent experiments. Our data indicate that the dependence of experimental data on the level of hydration of the Vycor sample is due to the different relative contribution of molecules adsorbed on the pore surface and bulk-like molecules in the interior of the pore to the experimental averages.  相似文献   

16.
We use multispeckle dynamic light scattering to measure the dynamic structure factor, f(q,tau), of gels formed by aggregation of colloids. Although the gel is an elastic solid, f(q,tau) nearly completely decays on long time scales, with an unusual form, f(q, tau) approximately exp{-(tau/tau(f))(mu)}, with mu approximately 1.5 and with tau(f) proportional variant q(-1). A model for restructuring of the gel with aging correctly accounts for this behavior. Aging leads to a dramatic increase in tau(f); however, all data can be scaled on a single master curve, with tau(f) asymptotically growing linearly with age. This behavior is strikingly similar to that predicted for aging in disordered glassy systems, offering convincing proof of the universality of these concepts.  相似文献   

17.
To understand the non-equilibrium behavior of colloidal particles with short-range attraction, we studied salt-induced aggregation of lysozyme. Optical microscopy revealed four regimes: bicontinuous texture, beads, large aggregates, and transient gelation. The interaction of a metastable liquid-liquid binodal and an ergodic to non-ergodic transition boundary inside the equilibrium crystallization region can explain our findings.  相似文献   

18.
We study the sedimentation of colloidal gels by using a combination of light scattering, polarimetry and video imaging. The asymptotic concentration profiles (z,t → ∞) exhibit remarkable scaling properties: profiles for gels prepared at different initial volume fractions and particle interactions can be superimposed onto a single master curve by using suitable reduced variables. We show theoretically that this behavior stems from a power law dependence of the compressive elastic modulus versus , which we directly test experimentally. The sedimentation kinetics comprises an initial latency stage, followed by a rapid collapse where the gel height h decreases at constant velocity and a final compaction stage characterized by a stretched exponential relaxation of h toward a plateau. Analogies and differences with previous works are briefly discussed.  相似文献   

19.
Soft colloidal interactions in colloidal glasses are modeled using suspensions of multiarm star polymers. Using a preshearing protocol that ensures a reproducible initial state ("rejuvenation" of the system), we report here the evolution of the flow curve from monotonically increasing to one dominated by a stress plateau, demonstrating a corresponding shear-banded state. Phenomenological understanding is provided through a scalar model that describes the free-energy landscape.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号