首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Anionic graft copolymers were synthesized through grafting of poly(ethylene glycol) monomethyl ether (MPEG) onto terpolymers containing succicinic anhydride groups. The backbone polymers were prepared through radical terpolymerization of maleic anhydride, styrene, and one of the following monomers: methyl methacrylate, ethylhexyl methacrylate, and diethyl fumarate. MPEG of different molecular weights were grafted onto the backbone through reactions with the cyclic anhydride groups. In this reaction one carboxylic acid group is formed together with each ester bond. The molecular weights of MPEG were found to influence the rate of the grafting reaction and the final degree of conversion. The graft copolymers were characterized by IR, GPC, and 1H-NMR. Thermal properties were examined by DSC. Graft copolymers containing 50% w/w of MPEG 2000 grafts were found to be almost completely amorphous, presumably because of crosslinking, and hydrogen bonding between carboxylic acid groups in the backbone and the ether oxygens in MPEG grafts. © 1995 John Wiley & Sons, Inc.  相似文献   

3.
Polymers with dendritic structure are a category of macromolecular architectures that has received considerable attention in the last decade. These polymers, also referred to as dendrimers, exhibit a degree of branching equal to unity. Interest in dendrimers whose branching points are linked to each other by generations of macromolecular size is in contrast quite new. This paper describes a new synthetic strategy which allows access to poly(ethylene oxide) (PEO) with dendritic structure. PEO dendrimers with different degree of compactness have been synthesized upon modifying the size of successive generations.  相似文献   

4.
New architectural graft copolymers were prepared, that is, the graft chains were situated in terminal or center position of the backbone chain. These graft copolymers were termed block-graft copolymers. Two different block-graft copolymers were prepared from a “grafting onto” process and a “grafting from” process via living anionic polymerization. These backbone chains are poly(styrene), and the graft chains are poly(isoprene) and poly(ethylene oxide). The polymers were characterized by GPC measurements, osmometry, and ultracentrifugation. The block-graft copolymers formed fine microphase separation structures. It was a morphological feature that an apparent volume fraction of the graft to the backbone might be higher than the real volume fraction.  相似文献   

5.
Crosslinked poly(ethylene oxide)-(PEO-N) is used as a novel medium for the anionic polymerization of methyl methacrylate (MMA) initiated by t-BuOK and ethyl-α-lithioisobutyrate (α-LiEtIB) in toluene. Comparative studies with linear poly(ethylene oxide)-(PEO-L) are performed as well. It is found that PEO-N effectively binds both initiators, and the polymerization process takes place mainly in the gel phase. PEO-N accelerates the polymerization process initiated by t-BuOK enabling the formation of high-molecular-weight polymers with high yields. Part of poly(methyl methacrylate)-(PMMA) remains in the gel particles yielding semi-interpenetrating networks with amphiphilic properties. PEO additives do not influence profoundly the course of the polymerization, initiated by α-LiEtIB. The influence of PEO-N on the proceeding of the polymerization is discussed in some detail.  相似文献   

6.
7.
ABA‐type amphiphilic tri‐block copolymers were successfully synthesized from poly(ethylene oxide) derivatives through anionic polymerization. When poly(styrene) anions were reacted with telechelic bromine‐terminated poly(ethylene oxide) ( 1 ) in 2:1 mole ratio, poly(styrene)‐b‐poly(ethylene oxide)‐b‐poly(styrene) tri‐block copolymers were formed. Similarly, stable telechelic carbanion‐terminated poly(ethylene oxide), prepared from 1,1‐diphenylethylene‐terminated poly (ethylene oxide) ( 2 ) and sec‐BuLi, was also used to polymerize styrene and methyl methacrylate separately, as a result, poly (styrene)‐b‐poly(ethylene oxide)‐b‐poly(styrene) and poly (methyl methacrylate)‐b‐poly(ethylene oxide)‐b‐poly(methyl methacrylate) tri‐block copolymers were formed respectively. All these tri‐block copolymers and poly(ethylene oxide) derivatives, 1 and 2 , were characterized by spectroscopic, calorimetric, and chromatographic techniques. Theoretical molecular weights of the tri‐block copolymers were found to be similar to the experimental molecular weights, and narrow polydispersity index was observed for all the tri‐block copolymers. Differential scanning calorimetric studies confirmed the presence of glass transition temperatures of poly(ethylene oxide), poly(styrene), and poly(methyl methacrylate) blocks in the tri‐block copolymers. Poly(styrene)‐b‐poly(ethylene oxide)‐b‐poly(styrene) tri‐block copolymers, prepared from polystyryl anion and 1 , were successfully used to prepare micelles, and according to the transmission electron microscopy and dynamic light scattering results, the micelles were spherical in shape with mean average diameter of 106 ± 5 nm. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

8.
9.
Hyperbranched-linear star block copolymers, hyperbranched poly(siloxysilane)-block-polystyrene (HBPS-b-PSt), were prepared by atom transfer radical polymerization (ATRP) of styrene in xylene, using bromoester-terminated HBPS (HBPS-Br (P3), Mn = 7500, Mw/Mn = 1.76) as a macroinitiator. The number-average molecular weights of the obtained polymers (Mn) were in the range of 21,800-60,000 and molecular weight distributions were unimodal throughout the reaction (Mw/Mn = 1.28-1.40). These polymers showed 5 wt.% decomposition temperature (Td5) over 300 °C. The DSC thermograms of the resulting polymers indicated two glass transition temperatures (Tg). The Tg of HBPS segment shifted to higher value while the Tg of PSt segment shifted to lower value compared with those of the homopolymers. Preliminary physical characterization related to the solution viscosity of the resulting block copolymers is also reported.  相似文献   

10.
The synthesis of well‐defined poly(methyl methacrylate)‐block‐poly(ethylene oxide) (PMMA‐b‐PEO) dibock copolymer through anionic polymerization using monohydroxy telechelic PMMA as macroinitiator is described. Living anionic polymerization of methyl methacrylate was performed using initiators derived from the adduct of diphenylethylene and a suitable alkyllithium, either of which contains a hydroxyl group protected with tert‐butyldimethylsilyl moiety in tetrahydrofuran (THF) at ?78 °C in the presence of LiClO4. The synthesized telechelic PMMAs had good control of molecular weight with narrow molecular weight distribution (MWD). The 1H NMR and MALDI‐TOF MS analysis confirmed quantitative functionalization of chain‐ends. Block copolymerization of ethylene oxide was carried out using the terminal hydroxyl group of PMMA as initiator in the presence of potassium counter ion in THF at 35 °C. The PMMA‐b‐PEO diblock copolymers had moderate control of molecular weight with narrow MWD. The 1H NMR results confirm the absence of trans‐esterification reaction of propagating PEO anions onto the ester pendants of PMMA. The micellation behavior of PMMA‐b‐PEO diblock copolymer was examined in water using 1H NMR and dynamic light scattering. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2132–2144, 2008  相似文献   

11.
New opportunities resulting from a turn to radical polymerization in the synthesis of poly(ethylene oxide) (PEO) networks are discussed and exemplified. Several series of such networks have been prepared by radical homo‐ and copolymerization in aqueous media of “macromonomers”, i.e. partly methacrylated poly(ethylene glycol) (PEG) of varied molecular weight (MW ≅ 2000‐12000) and functionality (fn ≅ 1.25‐1.8). This family of gels as a whole has the volume swelling degree Q in the range of 10 to 200 ml/ml. The hydrogels are characterized by means of Q, elastic modulus, swelling pressure, and with the use of some probes. The swelling behaviour of neutral hydrogels of this kind is briefly resumed. The multifunctional junctions formed in the propagation reaction of methacrylate end groups determine their main peculiarity. Anomalous elastic behaviour of the swollen networks prepared at high concentration of polymer has been observed and attributed to the network chains stretching of the same nature as in polymer stars or brushes. The junctions' functionality (F ≈ 20‐300) is evaluated from these data as well as from MW of the soluble models of network junctions. The PEO networks with charged units in junctions have been obtained by copolymerization of macromonomers with some ionic (meth)acrylic monomers. These gels display all the polyelectrolyte features, e.g. enhanced Q values in water (up to 50‐70) and, contrary to neutral PEO gels, the strong dependence on salt content. However, the osmotic contribution of mobile ions into swelling is shown to be low due to localization of charges in the junctions. The hydrogels that combine PEO and polymethacrylic acid chains capable of interpolymer complexation have been prepared and studied. They show much higher swelling in pure water (Q up to 200), strong deswelling by NaCl, and very sharp drop in swelling (ca. two order in Q) at pH ≈ 4.5‐5.5 due to complexation.  相似文献   

12.
Syntheses of poly(ethylene adipate) (ROP-PEA) and poly(ethylene adipate-co-terephthalate) (ROP-PEA-co-PET) were achieved via ring-opening polymerization of corresponding cyclic oligoesters. In case of ROP-PEA, cyclic oligo(ethylene adipate) (C-OEA) was equilibrated in the presence of di-n-butyltin oxide as a catalyst under high-concentration conditions at 180 and 200 °C for 1-24 h. The polymer products were obtained in yields up to 100% with the and in the ranges of 3000-23 000 g/mol and 5000-60 000 g/mol, respectively. The ROP-PEA-co-PET was prepared by equilibrating an equimolar amount of C-OEA and cyclic oligo(ethylene terephthalate) (C-OET) using di-n-butyltin oxide catalyst under high-concentration conditions at 250 °C for 24 h. The copolyester produced was obtained in yield of 97% with the and of 18 000 and 46 000 g/mol, respectively. 1H NMR spectrum of ROP-PEA-co-PET showed two new proton signals of ethylene unit representing the existence of heterolinkage with different chemical environment in the copolymer. This indicated the random transesterification of C-OEA and C-OET resulting in random structure in copolyester. In addition, the result of ROP-PEA-co-PET from DSC showed the glass transition temperature in the values of −8 °C with no melting temperature indicating thermoplastic elastomeric behavior.  相似文献   

13.
Poly(ethylene oxide/polylactide/poly(ethylene oxide) (PEO/PL/PEO) triblock copolymers, in which each block is connected by an ester bond, were synthesized by a coupling reaction between PL and PEO. Hydroxyl‐terminated PLs with various molecular weights were synthesized and used as hard segments. Hydroxyl‐terminated PEOs were converted to the corresponding acid halides via their acid group and used as a soft segment. Triblock copolymers were identified by Fourier transform infrared spectroscopy, 1H NMR, and gel permeation chromatography. Differential scanning calorimetry (DSC) and X‐ray diffractometry of PEO/PL/PEO triblock copolymers suggested that PL and PEO blocks were phase‐separated and that the crystallization behavior of the PL block was markedly affected by the presence of the PEO block. PEO/PL/PEO triblock copolymers with PEO 0.75k had two exothermic peaks (by DSC), and both peaks were related to the crystallization of PL. According to thermogravimetric analysis, PEO/PL/PEO triblock copolymer showed a higher thermal stability than PL or PEO. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2545–2555, 2002  相似文献   

14.
15.
Poly(ethylene oxide) (PEO) star polymer with a microgel core was prepared by atom transfer radical poylmerization (ATRP) of divinyl benzene (DVB) with mono‐2‐bromoisobutyryl PEO ester as a macroinitiator. Several factors, such as the feed ratio of DVB to the initiator, type of catalysts, and purity of DVB, play important roles during star formation. The crosslinked poly(divinyl benzene) (PDVB) core was further obtained by the hydrolysis of PEO star to remove PEO arms. Size exclusion chromatography (SEC) traces revealed the bare core has a broad molecular weight distribution. PEO–polystyrene (PS) heteroarm star polymer was synthesized through grafting PS from the core of PEO star by another ATRP of styrene (St) because of the presence of initiating groups in the core inherited from PEO star. Characterizations by SEC, 1H NMR, and DSC revealed the successful preparation of the target star copolymers. Scanning electron microscopy images suggested that PEO–PS heteroarm star can form spherical micelles in water/tetrahydrofuran mixture solvents, which further demonstrated the amphiphilic nature of the star polymer. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2263–2271, 2004  相似文献   

16.
Functional poly(ethylene oxide) star polymers possessing a tertiary amino group at each arm end were prepared by free-radical copolymerization of poly(ethylene oxide) macromonomers with divinylbenzene (DVB) in water or ethanol. The poly(ethylene oxide) arm was prepared by anionic polymerization using 2-[2-(N,N-dimethylamino)ethoxy]ethanol potassium alkoxide as the initiator. The star polymers had narrow molecular weight distribution. The arm number was controlled by varying the feed ratio [DVB]/[M], the initial concentration of macromonomer [M], and solvent media. The branching factor g' in methanol ([eta]S/[eta]L are the intrinsic viscosities of the star and linear molecules, respectively) exhibited a power-law dependence on the arm number, f, with a negative exponent. This means that the dimensions of a star were in agreement with the Daoud-Cotton scaling model.  相似文献   

17.
The graft polymerization of styrene onto preirradiated poly(ethylene oxide) was studied. From the measurement of swelling of the polymer in various solvents the solubility parameter of poly(ethylene oxide) was estimated as 9.3. The kinetic analysis of the reaction indicated that the graft polymerization was diffusion controlled. Kinetic parameters of the reaction such as \documentclass{article}\pagestyle{empty}\begin{document}$\int_0^t {R_i} dt,k_{p,} k_{tr}$\end{document}, and kt were obtained in poly(ethylene oxide)-styrene system and compared with those in poly(isobutylene oxide)-styrene system.  相似文献   

18.
Soluble comb-shaped and swelling network polymers based on monomethacrylate (M = 2080) and bismethacrylate (M = 4000) poly(ethylene oxide) macromonomers, have been synthesized by the controlled atom-transfer radical polymerization in aqueous media. PEG 2000 methyl ether ethyl-2-bromoisobutyrate and 2-bromoisobutyrate, in combination with CuBr, CuBr2, and 2,2′-bipyridyl, have been used as initiators. The length of the main chain of comb-shaped polymers, as estimated with multidetector chromatography, is in good agreement with the calculated values in the 15–20 range at M w /M n = 1.42–1.89. The polymerization of the methacrylate macromonomer proceeds at a high rate and with a nearly quantitative conversion. The replacement of 10–80 mol % CuBr with CuBr2 appreciably decelerates polymerization and decreases polydispersity to 1.14–1.21, while the experimental and calculated values of chain lengths remain equal. This finding indicates a higher level of process control. The polymer networks thus prepared manifest Gaussian elastic behavior, as is evident from the relationship between the elastic modulus G and the swelling degree Q that is consistent with the classical prediction GQ m , where m = ?1/3. Within the framework of the accepted model of networks of this type, this fact suggests the short length of polymethacrylate chains. In addition, the relationship between the time of attainment of the gelation point and the composition of the initiation system agrees with the atomtransfer controlled polymerization mechanism. The efficiencies of various radical polymerization methods for controlling the network structure are compared.  相似文献   

19.
 Poly(ethylene oxide) macromonomers carrying methoxy group on the one (α-) end and methacryloyloxyhexyl or methacryloyloxydecyl group on the other (ω-) end were prepared, homopolymerized in water, and dispersion-copolymer-ized with styrene or methyl methacrylate in a methanol–water mixture. They were found to polymerize more rapidly and to produce stable polystyrene dispersions more effectively, as compared to the corresponding macromonomers carrying either α-methoxy and or α-dodecyloxy and ω-methacryloyloxy end groups. Thus, the amphiphilic constitution of the macromonomers such that favors the polymerizing methacrylate end groups to locally concentrate into the micelle core or to the particle surface while the poly(ethylene oxide) chains extending to the medium appears to be most important in enhancing their polymerizability and effectiveness as reactive steric stabilizers. On the other hand, stable poly(methyl methacry-late) particles with a number of craters or pleats on the surface were produced with a PEO macromono-mer with α-methoxy and ω-methacryl-oyloxy end groups. Received: 4 September 1996 Accepted: 18 October 1996  相似文献   

20.
 The self-diffusion behavior of a triblock copolymer (PEO–b– PPO–b–PEO) in an aqueous solution of 20% (m/m) was investigated during a temperature-induced phase transition from liquid to gel state using pulsed field gradient NMR and static light scattering. The measured self-diffusivity shows a strong dependence on the observation time in the gel phase indicating the existence of diffusion barriers in the size range of about 0.6 μm. Additional static light-scattering measurements show a structure in the same size range of several hundred nanometers, which is far above molecular or micellar sizes and thus, has to be caused by larger clusters. The similarity in the space scales suggests that the restriction of molecular propagation is correlated with the grain boundaries between the domains of the poly-crystalline structure formed by the arranged micelles. Received: 28 October 1996 Accepted: 21 March 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号