首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
High-resolution photoemission study of MgB2   总被引:1,自引:0,他引:1  
We have performed high-resolution photoemission spectroscopy on MgB2 and observed opening of a superconducting gap with a narrow coherent peak. We found that the superconducting gap is s like with the gap value ( Delta) of 4.5+/-0.3 meV at 15 K. The temperature dependence (15-40 K) of the gap value follows well the BCS form, suggesting that 2Delta/k(B)T(c) at T = 0 is about 3. No pseudogap behavior is observed in the normal state. The present results strongly suggest that MgB2 is categorized into a phonon-mediated BCS superconductor in the weak-coupling regime.  相似文献   

2.
We have studied the variation of transverse magnetoresistance of underdoped YBCO(6.6) crystals, either pure or with reduced T(c) down to 3.5 K by electron irradiation, in fields up to 60 T. We find evidence that the superconducting fluctuation contribution to the conductivity is suppressed only above a threshold field H(c)'(T), which is found to vanish at T(c)' > T(c). In the pure YBCO(6.6) sample, H(c)' is already 50 T at T(c). We find that increasing disorder weakly depresses H(c)'(0), T(c)', and T(nu), the onset of the Nernst signal. Thus, these energy scales appear more characteristic of the 2D local pairing than the pseudogap temperature which is not modified by disorder.  相似文献   

3.
The hole-concentration (x) dependence of the three-dimensional energy-momentum dispersion in (Bi, Pb)2(Sr, La)2CuO(6+delta) has been investigated by angle-resolved photoemission spectroscopy. For a heavily overdoped sample of T(c) < or = 0.5 K, an energy dispersion of approximately 10 meV in width is observed in the vicinity of the (pi, 0) point with varying momentum along the c axis (k(z)). This k(z) dispersion is zero for underdoped, optimally doped, and slightly overdoped samples up to a doping level corresponding to T(c) = 22 k. At higher doping levels we observe significant dispersion of the order of 10 meV (sample with T(c) < or = 0.5 K). This is clear evidence that at a doping value corresponding to T(c) = 22 K, a crossover from two- to three-dimensional electronic structure occurs.  相似文献   

4.
Using scanning tunneling spectroscopy, we investigated the temperature dependence of the quasiparticle density of states of overdoped Bi(2)Sr(2)CuO(6+delta) between 275 mK and 82 K. Below T(c) = 10 K, the spectra show a gap with well-defined coherence peaks at +/-Delta(p) approximately 12 meV, which disappear at T(c). Above T(c), the spectra display a clear pseudogap of the same magnitude, gradually filling up and vanishing at T(*) approximately 68 K. The comparison with Bi(2)Sr(2)CaCu(2)O(8+delta) demonstrates that the pseudogap and the superconducting gap scale with each other, providing strong evidence that they have a common origin.  相似文献   

5.
Angle-resolved photoemission spectroscopy (ARPES) has been performed on the single- to triple-layered Bi-family high-T (c) superconductors (Bi(2)Sr(2)Ca(n-1)Cu(n)O(2n+4), n=1-3). We found a sharp coherent peak as well as a pseudogap at the Fermi level in the triple-layered compound. Comparison among three compounds has revealed a universal rule that the characteristic energies of superconducting and pseudogap behaviors are scaled with the maximum T (c).  相似文献   

6.
Temperature dependent optical spectra are reported for beta-Na0.33V2O5. The sodium ordering transition at T(Na)=240 K and, in particular, the charge ordering transition at T(MI)=136 K strongly influence the optical spectra. The metal-insulator transition at T(MI) leads to the opening of a pseudogap ( variant Planck's over 2pi omega=1700 cm(-1)) and to the appearance of a large number of optical phonons. These observations and the presence of a midinfrared band (typical for low dimensional metals) strongly suggest that the charge carriers in beta-Na0.33V2O5 are small polarons.  相似文献   

7.
Spatially resolved NMR is used to probe the magnetism in and around vortex cores of nearly optimally doped Tl(2)Ba(2)CuO(6+delta) (T(c)=85 K). The NMR relaxation rate T(-1)1 at the 205Tl site provides direct evidence that the antiferromagnetic (AF) spin correlation is significantly enhanced in the vortex core region. In the core region Cu spins show a local AF ordering with moments parallel to the layers at T(N)=20 K. Above T(N) the core region is in the paramagnetic state which is a reminiscence of the state above the pseudogap temperature (T(*) approximately 120 K), indicating that the pseudogap disappears within cores.  相似文献   

8.
From measurements of the 63Cu Knight shift ( K) and the nuclear spin-lattice relaxation rate ( 1/T1) under magnetic fields from zero up to 28 T in the slightly overdoped high- T(c) superconductor TlSr2CaCu2O6.8 ( T(c) = 68 K), we find that the pseudogap behavior, i.e., the reductions of 1/T1T and K above T(c) from the values expected from the normal state at high T, is strongly field dependent and follows a scaling relation. We show that this scaling is consistent with the effects of the Cooper pair density fluctuations. The present finding contrasts sharply with the pseudogap property reported previously in the underdoped regime where no field effect was seen up to 23.2 T. The implications are discussed.  相似文献   

9.
We have measured the complex conductivity sigma of a Bi(2)Sr(2)CaCu(2)O(8+delta) thin film between 0.2 and 0.8 THz. We find sigma in the superconducting state to be well described as the sum of contributions from quasiparticles, condensate, and order parameter fluctuations which draw 30% of the spectral weight from the condensate. An analysis based on this decomposition yields a quasiparticle scattering rate on the order of k(B)T/Planck's over 2pi for temperatures below T(c).  相似文献   

10.
Recent improvements in momentum resolution lead to qualitatively new angle-resolved photoemission spectroscopy results on the spectra of Bi(2)Sr(2)CaCu(2)O(8+delta) (Bi2212) along the (pi,pi) direction, where there is a node in the superconducting gap. We now see the intrinsic line shape, which indicates the presence of true quasiparticles at all Fermi momenta in the superconducting state, and lack thereof in the normal state. The region of momentum space probed here is relevant for charge transport, motivating a comparison of our results to conductivity measurements by infrared reflectivity.  相似文献   

11.
We use angle-resolved photoemission spectroscopy to investigate the energy gap(s) in (Bi,Pb)2(Sr,La)2CuO6+delta. We find that the spectral gap has two components in the superconducting state: a superconducting gap and pseudogap. Differences in their momentum and temperature dependence suggest that they represent two separate energy scales. Spectra near the node reveal a sharp peak with a small gap below T(c) that closes at T(c). Near the antinode, spectra are broad with a large energy gap of approximately 40 meV above and below T(c). The latter spectral shape and gap magnitude are almost constant across T(c), indicating that the pseudogap state coexists with the superconducting state below T(c), and it dominates spectra around the antinode. We speculate that the pseudogap state competes with the superconductivity by diminishing spectral weight in antinodal regions, where the superconducting gap is largest.  相似文献   

12.
We describe the approach of the superconducting state as a sequence of crossover phenomena. As the temperature is decreased, uncorrelated pairing of the electrons leads to the opening of a pseudogap at T(*)(F). Upon further lowering the temperature those electron pairs acquire well behaved itinerant features at T(*)(B), leading to partial Meissner screening and Drude-type behavior of the optical conductivity. Further decrease of the temperature leads to their condensation and superconductivity at T(c). The analysis is done on the basis of the boson-fermion model in the crossover regime between 2D and 3D.  相似文献   

13.
We show that a multilayer analysis of the infrared c-axis response of RBa2Cu3O(7-δ) (R=Y, Gd, Eu) provides important new information about the anomalous normal-state properties of underdoped cuprate high temperature superconductors. In addition to competing correlations which give rise to a pseudogap that depletes the low-energy electronic states below T*?T(c), it enables us to identify the onset of a precursor superconducting state below T(ons)>T(c). We map out the doping phase diagram of T(ons) which reaches a maximum of 180 K at strong underdoping and present magnetic field dependent data which confirm our conclusions.  相似文献   

14.
Results from the study of a highly overdoped (OD) Bi(2)Sr(2)CaCu(2)O(8+delta) with a T(c) = 51 K using angle-resolved photoemission spectroscopy are presented. We observe a sharp peak in the spectra near ( pi,0) that persists well above T(c), a nodal self-energy which approaches that seen for the Mo(110) surface state, and a more k-independent line shape at the Fermi surface than the lower-doped cuprates. This allows for a realistic comparison of the lifetime values to the experimental resistivity measurements. These observations point to the validity of the quasiparticle picture for the OD even in the normal state.  相似文献   

15.
We have measured intrinsic-tunneling spectra of a single CuO-layer La-doped Bi2(Sr(2-x)Lax)CuO(6+delta) (Bi2201-Lax). Despite a difference of a factor of 3 in the optimal superconducting critical temperatures for Bi2201-La0.4 and Bi2212 (32 and 95 K, respectively) and different spectral energy scales, we find that the pseudogap vanishes at a similar characteristic temperature T* approximately 230-300 K for both compounds. We find also that, in Bi2201-Lax, pseudogap humps are seen as sharp peaks and, in fact, even dominate the intrinsic spectra.  相似文献   

16.
We report measurements of the anisotropy of the spin echo decay for the inner layer Cu site of the triple layer cuprate Hg(0.8)Re(0.2)Ba(2)Ca(2)Cu(3)O(8) (T(c)=126 K). The angular dependence of the second moment (T(-2)(2M) identical with ) deduced from the decay curves indicates that T(-2)(2M) for H0 parallel c is enhanced in the pseudogap regime below T(pg) approximately 170 K, as seen in bilayer systems. Comparison of T(-2)(2M) between H0 parallel c and H0 perpendicular c indicates that this enhancement is caused by electron spin correlations between the inner and the outer CuO2 layers. The results provide the answer to the long-standing controversy regarding the opposite T dependences of (T1T)(-1) and T(-2)(2G) (T(2G): Gaussian component) in the pseudogap regime of multilayer systems.  相似文献   

17.
The bulk-representative low-energy spectrum of Sr2RuO4 can be directly measured by angle-resolved photoemission. We find that the quasiparticle spectral line shape of Sr2RuO4 is sensitive to both temperature and momentum. Along the (0,0)-(pi,0) direction, both gamma and beta bands develop a sharp quasiparticle peak near k(F) at low temperatures, but as the temperature increases the spectra quickly lose coherent weight and become broad backgrounds above approximately 130 K, which is the metal-nonmetal crossover temperature, T(M), in the c-axis resistivity. However, spectra along the (0,0)-(pi,pi) direction evolve smoothly across T(M). A simple transport model can describe both in-plane and c-axis resistivity in terms of the quasiparticle line shape. Comparisons are also made to the cuprates, with implications for two dimensionality, magnetic fluctuations, and superconductivity.  相似文献   

18.
The thermodynamics of the superconducting transition is studied as a function of doping using high-resolution expansivity data of YBa(2)Cu(3)O (x) single crystals and Monte Carlo simulations of the anisotropic 3D- XY model. We directly show that T(c) of underdoped YBa(2)Cu(3)O (x) is strongly suppressed from its mean-field value (T(MF)(c)) by phase fluctuations of the superconducting order parameter. For overdoped YBa(2)Cu(3)O (x) fluctuation effects are greatly reduced and T(c) approximately T(MF)(c). We find that T(MF)(c) exhibits a similar doping dependence as the pseudogap energy, naturally suggesting that the pseudogap arises from phase-incoherent Cooper pairing.  相似文献   

19.
While the optical properties of the superconducting salt alpha-(BEDT-TTF)(2)-NH4Hg(SCN)(4) remain metallic down to 2 K, in the nonsuperconducting K analog a pseudogap develops at frequencies of about 200 cm(-1) for temperatures T<200 K. We show that the optical conductivity calculated with exact-diagonalization techniques on an extended Hubbard model at quarter filling is consistent with the observed low-frequency feature. We argue that the different optical responses observed are a consequence of the proximity of these compounds to a charge-ordering transition driven by the intermolecular Coulomb repulsion.  相似文献   

20.
Using 12.7 fb(-1) of data collected with the CLEO detector at CESR, we observed two-photon production of the cc states chi(c0) and chi(c2) in their decay to pi(+)pi(-)pi(+)pi(-). We measured gamma(gammagamma)(chi(c))xB(chi(c)-->pi(+)pi(-)pi(+)pi(-)) to be 75+/-13(stat)+/-8(syst) eV for the chi(c0) and 6.4+/-1.8(stat)+/-0.8(syst) eV for the chi(c2), implying gamma(gammagamma)(chi(c0)) = 3.76+/-0.65(stat)+/-0.41(syst)+/-1.69(br) keV and gamma(gammagamma)(chi(c2)) = 0.53+/-0.15(stat)+/-0.06(syst)+/-0.22(br) keV. Also, cancellation of dominant experimental and theoretical uncertainties permits a precise comparison of gamma(gammagamma)(chi(c0))/gamma(gammagamma)(chi(c2)), evaluated to be 7.4+/-2.4(stat)+/-0.5(syst)+/-0.9(br), with QCD-based predictions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号