首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An ultra-high-pressure liquid chromatography–tandem mass spectrometry (UHPLC–MS/MS) method has been developed for the simultaneous quantification and confirmation of 11 basic/acidic illicit drugs and relevant metabolites in surface and urban wastewater at ng/L levels. The sample pre-treatment consisted of a solid-phase extraction using Oasis MCX cartridges. Analyte deuterated compounds were used as surrogate internal standards (except for norbenzoylecgonine and norcocaine) to compensate for possible errors resulting from matrix effects and those associated to the sample preparation procedure. After SPE enrichment, the selected drugs were separated within 6 min under UHPLC optimized conditions. To efficiently combine UHPLC with MS/MS, a fast-acquisition triple quadrupole mass analyzer (TQD from Waters) in positive-ion mode (ESI+) was used. The excellent selectivity and sensitivity of the TQD analyzer in selected reaction monitoring mode allowed quantification and reliable identification at the LOQ levels. Satisfactory recoveries (70–120%) and precision (RSD < 20%) were obtained for most compounds in different types of water samples, spiked at two concentration levels [limit of quantification (LOQ) and 10LOQ]. Thus, surface water was spiked at 30 ng/L and 300 ng/L (amphetamine and amphetamine-like stimulants), 10 ng/L and 100 ng/L (cocaine and its metabolites), 300 ng/L and 3000 ng/L (tetrahydrocannabinol-COOH). Recovery experiments in effluent and influent wastewater were performed at spiking levels of three and fifteen times higher than the levels spiked in surface water, respectively. The validated method was applied to urban wastewater samples (influent and effluent). The acquisition of three selected reaction monitoring transitions per analyte allowed positive findings to be confirmed by accomplishment of ion ratios between the quantification transition and two additional specific confirmation transitions. In general, drug consumption increased in the weekends and during an important musical event. The highest concentration levels were 27.5 μg/L and 10.5 μg/L, which corresponded to 3,4-methylenedioxymethamphetamine (MDMA, or ecstasy) and to benzoylecgonine (a cocaine metabolite), respectively. The wastewater treatment plants showed good removal efficiency (>99%) for low levels of illicit drugs in water, but some difficulties were observed when high drug levels were present in wastewaters.  相似文献   

2.
液相色谱-质谱法对饮用水中六价铬的测定   总被引:4,自引:0,他引:4  
建立了液相色谱分离、电喷雾质谱测定饮用水中六价铬的方法.水样经微孔滤膜过滤后直接进样,以乙腈-1.5 mmol/L四丁基氢氧化铵水溶液为流动相,Xterra~(TM) MS C_(18)色谱柱分离六价铬,使用单四极杆质谱,选择离子模式检测,监测离子为m/z 118、117、101、85,其中117为定量离子.Cr(Ⅵ)的线性范围为1.0 ~100.0 μg/L,方法定量下限为1 μg/L.在空白水样中分别添加1.0、2.0、10.0 μg/L的六价铬,测得平均回收率(n=5)依次为91%、94%、97%,相对标准偏差分别为12.2%、7.4%、3.5%.测定了42个饮用水样品,其中17批检出六价铬,检出量为1.2 ~15.4 μg/L.  相似文献   

3.
建立了高效液相色谱-质谱联用技术结合固相萃取和液液萃取方法检测水体和沉积物中12种磷酸酯类(OPEs)化合物残留的方法.水样样品经HLB固相萃取柱富集,乙酸乙酯洗脱两次,沉积物样品以乙腈超声萃取,旋转蒸发至干,用超纯水稀释后重复水样处理步骤,采用ZORBAX Eclipse Plus C18色谱柱(150 mm×2.1 mm, 3.5 μm)进行分离,以0.2%甲酸-甲醇作为流动相进行梯度洗脱,采用正离子MRM监测模式,外标法定量分析.水样中,12种OPEs在0.05、0.10和0.50 μg/L加标水平下,除TMP (28.5%~47.8%)和TEHP (22.4%~73.8%) 外,其余目标化合物的平均回收率为66.4%~115.0%,相对标准偏差为0.5%~9.1%,方法定量限(MOQ)为0.001~0.050 μg/L;沉积物中,在5、10和50 μg/kg加标水平下,除TMP(35.7%~44.9%)、TCEP (31.2%~48.9%)外,其余目标化合物的平均回收率为65.9%~120.0%,相对标准偏差为0.01%~9.5%,方法定量限(MOQ)为0.02~2.0 μg/kg(dw).基于上述方法对太湖水样和沉积物样品中目标化合物定量检测分析,∑OPEs含量分别为0.1~1.7 μg/L和8.1~420 μg/kg dw.  相似文献   

4.
A simple and sensitive method is presented for the analysis of nonylphenol (NP) and bisphenol A (BPA), two well known hormonally active agents (HAAs), in the samples of river water. The method involves extraction of the sample by a graphitized carbon black (GCB) solid‐phase extraction, and determination by an ion‐trap gas chromatography‐mass spectrometry (GC‐MS). The large‐volume injection technique provides high precision and sensitivity for NP and BPA, to quantitation at < 0.05 μg/L in 200 mL of water samples. Recovery of NP and BPA in spiked water samples ranged from 80% to 85%. Relative standard deviations (RSD) of replicate analyses ranged from 1.6% to 6.9%. The concentrations of NP in rivers were in the range between 0.4 to 2.4 μg/L, which were below the threshold concentration (10 μg/L) for vitellogenin induction in fish, but 78%) of water samples from five rivers exceeded the predicted‐no‐effect concentration (PNEC) of 0.7 μg/L as proposed recently. The concentrations of BPA ranged from < 0.05 μg/L to 3.0 μg/L, which all were below the PNEC of 64 μg/L.  相似文献   

5.
In the present work, a rapid method with little sample handling has been developed for determination of 23 selected volatile organic compounds in environmental and wastewater samples. The method is based on headspace solid-phase microextraction (SPME) followed by gas chromatography coupled to tandem mass spectrometry (GC-MS/MS) determination using triple quadrupole analyzer (QqQ) in electron ionization mode. The best conditions for extraction were optimised with a factorial design taking into account the interaction between different parameters and not only individual effects of variables. In the optimized procedure, 4 mL of water sample were extracted using a 10 mL vial and adding 0.4 g NaCl (final NaCl content of 10%). An SPME extraction with carboxen/polydimethylsiloxane 75 μm fiber for 30 min at 50°C (with 5 min of previous equilibration time) with magnetic stirring was applied. Chromatographic determination was carried out by GC-MS/MS working in Selected Reaction Monitoring (SRM) mode. For most analytes, two MS/MS transitions were acquired, although for a few compounds it was difficult to obtain characteristic abundant fragments. In those cases, a pseudo selected reaction monitoring (pseudo-SRM) with three ions was used instead. The intensity ratio between quantitation (Q) and confirmation (q) signals was used as a confirmatory parameter. The method was validated by means of recovery experiments (n=6) spiking mineral water samples at three concentration levels (0.1, 5 and 50 μg L(-1)). Recoveries between 70% and 120% were generally obtained with relative standard deviations (RSDs) lower than 20%. The developed method was applied to surface water and wastewater from a wastewater treatment plant and from a municipal solid-waste treatment plant. Several compounds, like chloroform, benzene, trichloroethylene, toluene, tetrachloroethylene, dibromochloromethane, xylenes and bromoform were detected and confirmed in all the samples analyzed.  相似文献   

6.
Trace levels analysisbenzalkonium chlorides (BAKs) in river water and wastewater treatment plants (WWTP) effluents were determined by capillary electrophoresis (CE) following solid‐phase extraction (SPE) and salting‐out extraction. Salting‐out extraction using an appropriate ratio of sodium chloride (NaCl) and acetonitrile (ACN) mixed with concentrated SPE elutant was capable of providing more than 500‐fold enhancement in detection sensitivity. The ratios of ACN and NaCl for salting‐out extraction were investigated and optimized. Matrix interference was eliminated by salting‐out extraction. Limits of quantitation of BAK homologues were achieved at 0.1 μg/L in 250 mL water samples. Recoveries of BAKs in various spiked water samples ranged from 70% to 84% with relative standard deviation (RSD) less than 9%. Trace amounts of total BAKs were detected in river water and WWTP effluent samples ranging from 27 to 145 μg/L at the first time by CE.  相似文献   

7.
基于低温处理和QuEChERS方法,采用超高效液相色谱-四极杆/静电场轨道阱高分辨质谱建立了动物性食品中氟虫腈及其代谢物残留的分析检测方法。样品采用乙腈提取,经低温处理,N-丙基乙二胺(PSA)和C18粉分散固相萃取(d-SPE)净化,以BEH C18色谱柱为分析柱,乙腈-0.1%乙酸溶液为流动相进行梯度洗脱分离,外标法定量。采用高分辨质谱平行反应监测(PRM)扫描模式,以负离子采集进行定性筛查和定量分析。氟虫腈及其代谢物在0.02~2μg/L和0.2~20μg/L质量浓度范围内均呈良好的线性关系,相关系数(r2)大于0.992。对液体或半液体样品(如牛奶和鸡蛋)和固体样品(如鸡肉),方法的定量下限分别为0.1μg/kg和0.2μg/kg。在不同浓度的加标水平下,氟虫腈及其代谢物在鸡蛋中的平均回收率为81.6%~96.9%,相对标准偏差(RSD)为1.3%~11.5%;在鸡肉中的平均回收率为81.2%~96.0%,RSD为3.4%~11.4%;在牛奶中的平均回收率为79.1%~100.1%,RSD为1.5%~10.7%。该方法简单、灵敏、准确,适用于动物性食品中氟虫腈及其代谢物的快速筛查和定量检测,方法的灵敏度满足欧盟的残留限量要求。  相似文献   

8.
使用反相固相萃取预处理与超高效液相色谱-串联四极杆质谱仪(RSPE UPLC-MS/MS)联用建立了同时测定污水中9种卤乙酸(HAAs)的分析方法。研究表明:ENVI-C18固相萃取小柱能有效去除污水样品中有机基质的干扰,样品pH值调至2.5能有效消除无机离子对HAAs离子化的影响;采用HSST3(2.1 mm×100 mm)色谱柱,以甲醇和0.000 5%甲酸为流动相,可在15.0 min内将9种HAAs分离且效果良好。采用优化后的程序建立标准曲线,9种HAAs的线性范围为0.5~100μg/L,相关系数(r2)为0.999 7~0.999 9,检出限和定量下限分别为0.02~0.26μg/L和0.05~0.86μg/L,日内和日间相对标准偏差分别为1.4%~10.0%和1.7%~10.0%。3个污水处理厂出水在2.5μg/L和10μg/L的加标浓度水平下,回收率为85.2%~107.8%。该方法能够满足污水处理厂出水中9种HAAs的检测要求。  相似文献   

9.
A multi-class method for the simultaneous quantification and confirmation of 47 pharmaceuticals in environmental and wastewater samples has been developed. The target list of analytes included analgesic and anti-inflammatories, cholesterol lowering statin drugs and lipid regulators, antidepressants, anti-ulcer agents, psychiatric drugs, ansiolitics, cardiovasculars and a high number (26) of antibiotics from different chemical groups. A common pre-concentration step based on solid-phase extraction with Oasis HLB cartridges was applied, followed by ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) measurement. All compounds were satisfactorily determined in just one single injection, with a chromatographic run time of only 10 min. The process efficiency (combination of the matrix effect and the extraction process recovery) for the 47 selected compounds was evaluated in nine effluent wastewater (EWW) samples, and the use of different isotope-labelled internal standards (ILIS) was investigated to correct unsatisfactory values. Up to 12 ILIS were evaluated in EWW and surface water (SW). As expected, the ILIS provided satisfactory correction for their own analytes. However, the use of these ILIS for the rest of pharmaceuticals was problematic in some cases. Despite this fact, the correction with analogues ILIS was found useful for most of analytes in EWW, while was not strictly required in the SW tested. The method was successfully validated in SW and EWW at low concentration levels, as expected for pharmaceuticals in these matrices (0.025, 0.1 and 0.5 μg/L in SW; 0.1 and 0.5 μg/L in EWW). With only a few exceptions, the instrumental limits of detection varied between 0.1 and 8 pg. The limits of quantification were estimated from sample chromatograms at the lowest spiked levels tested and normally were below 20 ng/L for SW and below 50 ng/L for EWW. The developed method was applied to the analysis of around forty water samples (river waters and effluent wastewaters) from the Spanish Mediterranean region. Almost all the pharmaceuticals selected in this work were detected, mainly in effluent wastewater. In both matrices, analgesics and anti-inflammatories, lipid regulators and quinolone antibiotics were the most detected groups.  相似文献   

10.
The influence of natural organic matter on the screening of pharmaceuticals in water was determined by using high resolution liquid chromatography (HRLC) combined with full scan mass spectrometry (MS) techniques like time of flight (ToF) or Orbitrap MS. Water samples containing different amount of natural organic matter (NOM) and residues of a set of 11 pharmaceuticals were analyzed by using Exactive Orbitrap? LC-MS. The samples were screened for residues of pharmaceuticals belonging to different classes like benzimidazoles, macrolides, penicillins, quinolones, sulfonamides, tetracyclines, tranquillizers, non-steroidal anti-inflammatory drugs (NSAIDs), anti-epileptics and lipid regulators. The method characteristics were established over a concentration range of 0.1-500 μg L(-1). The 11 pharmaceuticals were added to two effluent and two influent water samples. The NOM concentration within the samples ranged from 2 to 8 mg L(-1) of dissolved organic carbon. The HRLC-Exactive Orbitrap? LC-MS system was set at a resolution of 50,000 (FWHM) and this selection was found sufficient for the detection of the list of pharmaceuticals. With this resolution setting, accurate mass measurements with errors below 2 ppm were found, despite of the NOM concentration of the different types of water samples. The linearities were acceptable with correlation coefficients greater than 0.95 for 30 of the 51 measured linearities. The limit of detection varies between 0.1 μg L(-1)and 100 μg L(-1). It was demonstrated that sensitivity could be affected by matrix constituents in both directions of signal reduction or enhancement. Finally it was concluded that with direct shoot method used (no sample pretreatment) all compounds, were detected but LODs depend on matrix-analyte-concentration combination. No direct relation was observed between NOM concentration and method characteristics. For accurate quantification the use of internal standards and/or sample clean-up is necessary. The direct shoot method is only applicable for qualitative screening purposes. The use of full scan MS makes it possible to search for unknown contaminants. With the use of adequate software and a database containing more than 50,000 entries a tool is available to search for unknowns.  相似文献   

11.
孟娟  张晶  张楠  施嘉琛  邵兵 《色谱》2010,28(6):601-607
建立了粮食及其制品中6种玉米赤霉烯酮类物质(α-玉米赤霉醇、β-玉米赤霉醇、α-玉米赤霉烯醇、β-玉米赤霉烯醇、玉米赤霉酮和玉米赤霉烯酮)的超高效液相色谱-串联质谱(UPLC-MS/MS)检测方法。样品用84%(体积分数)乙腈水溶液提取,通过ENVI-Carb石墨化炭黑(GCB)固相萃取柱进行富集净化,用6 mL二氯甲烷-甲醇(7:3, v/v)溶液洗脱,采用UPLC-MS/MS进行测定。在ACQUITY UPLCTM BEH C18反相柱上分离,梯度洗脱,流动相为水和乙腈;质谱采集模式为电喷雾负离子多反应监测模式。以α-玉米赤霉烯酮-d4为内标,6种目标物的线性范围为0.1~50 μg/L,相关系数(R2)大于0.99,检出限为0.1~0.2 μg/kg, 3个不同水平的加标平均回收率为79.9%~104.0%,相对标准偏差不大于10%。应用该方法对北京市的粮食及相关产品进行了分析,结果发现玉米赤霉烯酮的检出率最高,含量为0.42~220.7 μg/kg;此外还检出了α-和β-玉米赤霉烯醇。该方法具有操作简单、灵敏度高、重现性好等特点,符合食品样品中痕量污染物的检测要求。  相似文献   

12.
研究建立了一种加速溶剂萃取-固相萃取/超高效液相色谱-串联质谱法(SPE-UPLC-MS/MS)测定育苗基质中矮壮素和助状素的分析方法。样品采用快速溶剂萃取仪(ASE)提取,经CBA弱阳离子交换柱净化后,在亲水作用色谱柱上用SeQuant ZLC-HILIC MEKCK色谱柱进行分离;电喷雾正离子(ESI+)模式电离,多反应监测(MRM)模式检测。矮壮素和助状素的质量浓度在0.2~10 μg/kg范围内线性关系良好(r2>0999),在2、5、10 μg/kg加标水平的平均回收率分别为77%~106%和97%~111%,相对标准偏差(RSD)分别为7.3%~21.7%和5.6%~16.1%,检出限(LOD)均为0.02 μg/kg,定量下限(LOQ)均为0.1 μg/kg。该方法简便、快速、灵敏、准确,适合育苗基质中矮壮素和助状素残留的确证和定量测定。  相似文献   

13.
陈达捷  张志刚  周昱  肖宗源  徐敦明 《色谱》2012,30(9):896-902
建立了食品中嘧啶胺类杀菌剂嘧霉胺、嘧菌胺及嘧菌环胺残留的串联固相萃取-液相色谱-串联质谱(HPLC-MS/MS)检测方法。胡萝卜、辣椒等样品经乙酸乙酯提取,石墨化炭黑-弗罗里硅藻土串联固相萃取柱(ENVI-Carb-Florisil SPE)净化后,在HPLC-MS/MS仪上进行检测分析,采用外标法定量。质谱分析采用电喷雾电离,正离子扫描,多反应监测模式。结果表明,柱净化后无明显的基质效应,嘧霉胺、嘧菌胺和嘧菌环胺在1~20 μg/L内相关系数可达0.9990以上,具有良好的线性关系;每种杀菌剂选择两个离子对,其中一组用于定量: 嘧霉胺m/z 200.1/107.1,嘧菌胺m/z 224.0/106.0及嘧菌环胺m/z 226.0/108.1;另一组用于确证: 嘧霉胺m/z 200.1/183.1,嘧菌胺m/z 224.0/131.1和嘧菌环胺m/z 226.0/133.1。样品中添加0.1、0.5、1.0 μg/kg的标准品,其回收率为73.2%~98.7%,相对标准偏差(n=10)小于10%;嘧霉胺、嘧菌胺、嘧菌环胺的检出限(信噪比(S/N)=3)均为0.03 μg/kg;嘧霉胺、嘧菌胺、嘧菌环胺的定量限(S/N=10)均为0.1 μg/kg。实验结果表明,该方法提取效果好,具有良好的灵敏度、回收率和重复性。  相似文献   

14.
An ultra-high-pressure liquid chromatography–tandem mass spectrometry (UHPLC–MS/MS) method for the determination of 37 pesticides (herbicides, insecticides and fungicides) in environmental and wastewater has been developed. To efficiently combine UHPLC with MS/MS, a fast-acquisition triple quadrupole mass analyzer was used. This analyzer (minimum dwell time, 5 ms) allows acquiring up to three simultaneous transitions in the selected reaction monitoring mode for each compound assuring a reliable identification without resolution or sensitivity losses. A pre-concentration step based on solid-phase extraction using Waters Oasis HLB cartridges (0.2 g) was applied with a 100-fold pre-concentration factor along the whole analytical procedure. The method was validated based on European SANCO guidelines using surface, ground, drinking and treated water (from an urban solid residues treatment plant) spiked at two concentration levels (0.025 and 0.1 μg/L), the lowest having been established as the limit of quantification objective. The method showed excellent sensitivity, with instrumental limits of detection ranging from 0.1 to 7 pg. It was applied to environmental water samples (ground and surface water) as well as to samples of urban solid waste leachates (raw leachate and treated leachate after applying reversed osmosis) collected from a municipal treatment plant. Matrix effects have been studied in the different types of water samples analyzed, and several isotope-labelled internal standards have been evaluated as a way to compensate the signal suppression observed for most of the compounds studied, especially in wastewater samples. As a general remark, only those pesticides which response was corrected using their own isotope-labelled molecule, could be satisfactorily corrected in all type of samples, assuring in this way the accurate quantification in all matrix samples.  相似文献   

15.
The present study firstly aimed at developing a multi-residue method to identify and quantify 38 veterinary antibiotics (belonging to five different classes) not only for raw swine wastewater but also for wastewater differently treated by different units. The proposed method is based on a solid-phase extraction procedure and ultra high performance liquid chromatography with mass spectrometry. For sample preparation, the optimal loading sample volume was selected as 50 mL, the pH of which was adjusted to approximately 3.0 using formic acid. Then 0.1 g/L ethylenediaminetetraacetic acid disodium salt was added. The recovery rates for different types of wastewaters were in the range of 35.94–124.51% and the relative standard deviations were in the range of 0.36–14.62%. All the matrix standard curves exhibited high linearity (0.9956–0.9999). The matrix effects for the target antibiotics ranged from –61.73 to +148.75%. To ensure the practicality of the method, we performed the detection of the actually added concentration to determine method detection limits and quantitation limits. The quantitation limits of most of the target antibiotics were 0.04 μg/L, except for spiramycin (0.1 μg/L) and roxithromycin (0.2 μg/L). This optimized and validated method was applied to analyze antibiotic residues in swine water samples from four swine farms.  相似文献   

16.
A rapid multianalyte‐multiclass method with little sample manipulation has been developed for the simultaneous determination of eleven mycotoxins in different food commodities by using ultra‐high‐pressure liquid chromatography coupled to triple quadrupole mass spectrometry (UHPLC/MS/MS). Toxins were extracted from the samples with acetonitrile/water (80:20, v/v) 0.1% HCOOH and, after a two‐fold dilution with water, directly injected into the system. Thanks to the fast high‐resolution separation of UHPLC, the eleven mycotoxins were separated by gradient elution in only 4 min. The method has been validated in three food matrices (maize kernels, dry pasta (wheat), and eight‐multicereal babyfood (wheat, maize, rice, oat, barley, rye, sorghum, millet)) at four different concentration levels. Satisfactory recoveries were obtained (70–110%) and precision (expressed as relative standard deviation) was typically below 15% with very few exceptions. Quantification of samples was carried out with matrix‐matched standards calibration. The lowest concentration successfully validated in sample was as low as 0.5 µg/kg for aflatoxins and ochratoxin A in babyfood, and 20 µg/kg for the rest of the selected mycotoxins in all matrices tested. Deoxynivalenol could be only validated at 200 µg/kg, due the poor sensitivity for this mycotoxin analysis. With only two exceptions (HT‐2 and deoxynivalenol), the limits of detection (LODs), estimated for a signal‐to‐noise ratio of 3 from the chromatograms of samples spiked at the lowest level validated, varied between 0.1 and 1 µg/kg in the three food matrices tested. The method was applied to the analysis of different kinds of samples. Positive findings were confirmed by acquiring two transitions (Q quantification, q confirmation) and evaluating the Q/q ratio. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
建立了尿样中8-羟基脱氧鸟嘌呤的HPLC-MS测定方法.尿样中的8-羟基脱氧鸟嘌呤采用WCX固相萃取小柱预富集后,以0.5%甲酸-甲醇洗脱,吹干后用0.5 mL流动相溶解剩余物上机测定.采用分子的二级碎片,方法在5.0~500.0 μg/L范围内呈良好线性关系,相关系数r=0.999 4,检出限(S/N=3)为0.50...  相似文献   

18.
In this study, a simple, efficient, and reusable device based on cellulose membranes modified with polypyrrole was developed to extract 14 emerging contaminants from aqueous matrices. For chemical polymerization, a low‐cost cellulose membrane was immersed in 0.1 mol/L pyrrole and 0.5 mol/L ammonium persulfate for 40 min in an ice/water bath. The cellulose membranes modified with polypyrrole were accommodated in a polycarbonate holder suitable for solid‐phase extraction disks. Solid‐phase extraction parameters that affect extraction efficiency, such as sample volume, pH, flow rate, and desorption were optimized. Subsequently, determination of target compounds was performed by gas chromatography with mass spectrometry. The linear range for analytes ranged from 0.05 to 500 μg/L, with coefficients of determination above 0.990. The limits of quantification varied between 0.05 and 10 μg/L, with relative standard deviations lower than 17%. The performance of the proposed cellulose membranes modified with polypyrrole device for real samples was evaluated after extraction of emerging contaminants from a river water sample from the city of Curitiba, Brazil. Bisphenol A (6.39 μg/L), caffeine (17.83 μg/L), and paracetamol (19.28 μg/L) were found in these samples.  相似文献   

19.
A new method has been developed and validated for the simultaneous analysis of 11 polychlorinated biphenyls (PCBs), in water samples at trace levels by gas chromatography coupled to triple quadrupole mass spectrometry (GC-QqQ-MS/MS). Water samples were extracted by the QuEChERS (Quick Easy Cheap Effective Rugged and Safe) method. The QqQ analyzer acquired data in multiple reactions monitoring (MRM), permitting both quantification and confirmation in a single injection with a running time reduced up to 11.0 min. The effect of matrix interferences in extracts on analyte quantification and the identification of PCBs in water samples was deeply studied. The results showed that PCBs were prone to strong matrix interactions in water samples, and the quantification and identification of PCBs were highly affected by a matrix enhancement effect. To evaluate the performance of the method, validation experiments were carried out on water samples at three spiking levels (1.6, 8.0, 40.0 μg L(-1)). Recovery was in the range of 95 - 109% at 1.6 μg L(-1), 90 - 95% at 8.0 μg L(-1) and 97 - 102% at 40.0 μg L(-1), respectively. Precision values expressed as relative standard deviation (RSD) were lower than 15%. Linearity in the range of 0.5 - 50.0 μg L(-1) provided determination coefficients (R(2)) higher than 0.999 for all compounds. The limits of detection (LODs) for PCBs were ≤0.1 μg L(-1) and the limits of quantification (LOQs) ranged from 0.04 to 0.3 μg L(-1). The applicability of the proposed method to detect and quantify PCBs has been demonstrated in analyse of 15 real samples.  相似文献   

20.
建立了一种固相萃取/高效液相色谱-串联质谱(SPE/HPLC-MS/MS)同时检测水体中24种农药的分析方法。样品用乙腈提取后,经固相萃取小柱富集净化。以乙腈-0.1%(体积分数)甲酸水溶液为流动相梯度洗脱,在电喷雾离子源正离子模式下(ESI+)采用多反应监测(MRM)模式检测。结果显示,24种农药在1~200μg/L范围内具有良好的线性关系,相关系数(r2)均不小于0.998,水样中3个添加水平(5、20、100μg/L)下的回收率为65.9%~127.8%,相对标准偏差(RSD)为0.7%~14.2%;方法检出限为0.05~0.71 ng/L。采用该方法对大连地区10个河流入海口及2个水库的水样进行了检测,12个站位的样品中共检出10种农药,质量浓度为0.2~558.3 ng/L。结果表明,所建立的SPE/HPLC-MS/MS方法高效、灵敏、可靠,可用于实际水体中多种农药的同时检测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号