首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The single-bubble sonoluminescence of d-f (Ce3+, Pr3+) and f-f (Tb3+) ions is detected in aqueous solutions of LnCl3. It has been shown that the luminescence of these ions is sonophotoluminescence, i.e., the reemission of the absorbed short-wavelength part of the radiation spectrum of a blackbody, which appears in a bubble levitating in the field of a standing ultrasonic wave, in the bulk of the solution. In view of the revealed inefficiency of reemission in GdCl3, the single-bubble sonoluminescence of Gd3+ has not been observed. The results indicate the low probability of the penetration of nonvolatile metal ions into the bubble in the hot shell model, which would be valid in single-bubble sonolysis and thereby confirm the validity of the injected droplet model, which explains the penetration to the bubble, electronic excitation, and luminescence of f-f ions Gd3+ and Tb3+ in multibubble sonolysis with an intensity much higher than the yield of their sonophotoluminescence.  相似文献   

2.
The use of optically robust, luminescent lanthanide-based particles is becoming an area of interest for biolabel-related chemistry, due to their long lifetimes and range of non-overlapping absorption and emission lines from the visible to the near-infrared. We report the synthesis and optical properties of water-soluble, luminescent Ln3+-doped nanoparticles (NPs) coordinated with a hydrophilic (RO)PO32− ligand that facilitates the stabilization of the NPs in aqueous conditions, and that regulates particle growth to the nanometer range. The use of lanthanide ions as dopants, in particular Eu3+ and Er3+ ions, yields optically robust particles with narrow emission lines in the visible (591 nm) and in the near-infrared (1530 nm), respectively. Luminescent lifetimes range from the microsecond to the millisecond for Er3+ and Eu3+ ions, respectively, and the NPs are not expected to be susceptible to photo-bleaching due to the fact that the emissions arise from intra-4f transitions of the lanthanide ions.  相似文献   

3.
Luminescence bands of Tb3+ and Gd3+ ions are detected during sonolysis in the regime of a moving single bubble in aqueous solutions of TbCl3 and GdCl3 salts with concentration 1–2 mol/L. Saturation with argon, low temperatures of solutions (?5°C), and a high concentration of salts are the factors facilitating sonoluminescence of the metal. Comparison with the characteristics of sonoluminescence of lanthanide ions studied earlier in the regimes of multibubble and single-bubble sonolysis with a stationary bubble shows that the electron excitation of metal ions in the given case is associated with translational displacements of the bubble. Our results confirm the validity of the sonochemical model of microdroplet injection, which explains the penetration of nonvolatile salts into cavitation bubbles as a result of their deformation during intense movements.  相似文献   

4.
5.
We have compiled and analyzed optical and structural properties of lanthanide doped non-metal oxides of the form APO4:Ln3+ with A a rare earth and of transition metal oxides with formula ABO4:Ln3+ with B a transition metal. The main objective is to understand better the interrelationships between the band gap energy, the O2−→Ln3+ charge transfer energy, and the Ln3+→B5+ inter-valence charge transfer energy. Various models exist for each of these three types of electron transitions in inorganic compounds that appear highly related to each other. When properly interpreted, these optically excited transitions provide the locations of the lanthanide electron donating and electron accepting states relative to the conduction band and the valence band of the hosting compound. These locations in turn determine the luminescent properties and charge carrier trapping properties of that host. Hence, understanding the relationship between the different types of charge transfer processes and its implication for lanthanide level location in the band gap is of technological interest.  相似文献   

6.
ABSTRACT

The visible emission and vacuum ultraviolet excitation spectra of the series Cs2NaLnCl6 (Ln = Y, Nd, Sm, Eu, Tb, Er, Yb) and Cs2NaYCl6:Ln3+ (Ln = Sm, Er) have been recorded using synchrotron radiation at room temperature, and in some cases at 10 K. The excitation spectra comprise features associated with charge transfer, excitation from the valence to conduction band, and impurity bands. No d–f emissions were observed for these Ln3+ ions, so that the emission bands comprise intraconfigurational 4f N –4f N transitions and impurity bands, whose natures are discussed. Theoretical simulations of the f–d absorption spectra have been included. The comparison with data from the synchrotron at Desy enables a comprehensive account of the ground (or vibrationally excited ground for Ln2+) states of the Ln3+ 4f N , Ln3+ 4f N?15d, and Ln2+ 4f N+1 configurations relative to the valence and conduction bands of Cs2NaLnCl6, for which the band gaps are between 6.6 and 8.1 eV.  相似文献   

7.
Currently, tripositive lanthanide (Ln3+) ions doped wide band-gap semiconductor nanocrystals (NCs) have been the focus of research interest due to their distinct optical properties and potential applications in optical devices and luminescent biolabels. Because of the low absorptions of parity-forbidden 4f-4f transitions for Ln3+, it is highly anticipated that the luminescence of Ln3+ ions embedded in wide band-gap NC lattices can be sensitized efficiently via exciton recombination in the host. For this purpose, the successful incorporation of Ln3+ into the lattices of semiconductor NCs is of utmost importance, which still remains intractable via conventional wet chemical methods. Here, the most recent progress in the optical spectroscopy of Ln3+ ions doped wide band-gap semiconductor NCs is discussed. Much attention was focused on the optical properties including electronic structures, luminescence dynamics, energy transfer as well as the up-conversion emissions of Ln3+ ions in ZnO, TiO2, SnO2 and In2O3 NCs that were synthesized in our laboratory using wet chemical methods.  相似文献   

8.
The magnetic and thermodynamic properties of the complete Ln2/3Cu3Ti4O12 series were investigated. Here Ln stands for the lanthanides La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Yb. All the samples investigated crystallize in the space group Im[`3]Im\bar{3} with lattice constants that follow the lanthanide contraction. The lattice constant of the Ce compound reveals the presence of Ce4+ leading to the composition Ce1/2Cu3Ti4O12. From magnetic susceptibility and electron-spin resonance experiments it can be concluded that the copper ions always carry a spin S = 1/2 and order antiferromagnetically close to 25 K. The Curie-Weiss temperatures can approximately be calculated assuming a two-sublattice model corresponding to the copper and lanthanide ions, respectively. It seems that the magnetic moments of the heavy rare earths are weakly coupled to the copper spins, while for the light lanthanides no such coupling was found. The 4f moments remain paramagnetic down to the lowest temperatures, with the exception of the Tm compound, which indicates enhanced Van-Vleck magnetism due to a non-magnetic singlet ground state of the crystal-field split 4f manifold. From specific-heat measurements we accurately determined the antiferromagnetic ordering temperature and obtained information on the crystal-field states of the rare-earth ions.  相似文献   

9.
The electrical resistivity ρ and the thermopower S of ceramic materials LnBaCuFeO5 + δ (Ln= La, Pr, Nd, Sm, Gd-Lu) are measured in air at temperatures in the range from 300 to 1100 K. All the studied ferrocuprates are p-type semiconductors. The electrical resistivity ρ and the thermopower S of these compounds increase with a decrease in the radius of the Ln 3+ cation (with an increase in the number of 4f electrons n in Ln 3+). The nonmonotonic behavior of the dependences ρ=f(n) and S=f(n) indicates that the electrical properties of the layered ferrocuprates LnBaCuFeO5 + δ depend on the electronic configuration of the Ln 3+ cation. The power factors P calculated for the LnBaCuFeO5 + δ ceramic materials from the experimental values of ρ and S increase with increasing temperature and, at T = 1000 K, reach the maximum values P = 102.0 and 54.1 μW m−1 K−2 for Ln = Pr(4f 2) and Sm(4f 5), respectively, and become close to each other and equal to 30–35 μW m−1 K−2 for Ln = Gd(4f 7), Dy(4f 9), and Ho(4f 10).  相似文献   

10.
Radiationless energy transfer between rare-earth ions (Ln3+) in solutions has some features: 1) the electronic transitions in Ln3+ complexes causing the luminescence of energy donor and the absorption of energy acceptors are forbidden by Laporte's rule and are weakly intensive. Therefore the critical radius (Ro) of energy transfer between the rare-earth ions for dipole-dipole mechanism is close to that for exchange-resonant mechanism. This fact presents difficulties for unequivocal interpretation of the energy transfer mechanism. 2) The plus-three lanthanide ions exist in solution as a set of complexes with different number of charged ligands in the inner coordination sphere and hence with different total charge of complexes.  相似文献   

11.
Recently [see V.V. Anisovich et al., Yad. Fiz. 63, 1489 (2000)], the K-matrix solutions for the wave IJ PC=00++ were obtained in the mass region 450–1900 MeV, where four resonances f 0(980), f 0(1300), f 0(1500), f 0(1750) and the broad state f 0(1530 −250 +90 ) are located. Based on these solutions, partial widths are determined for scalar-isoscalar states decaying into the channels ππ, KK ηη, ηη′, ππππ and corresponding decay couplings. From Yadernaya Fizika, Vol. 65, No. 8, 2002, pp. 1583–1590. Original English Text Copyright ? 2002 by Anisovich, Nikonov, Sarantsev. This article was submitted by the authors in English.  相似文献   

12.
The inhibitory effects of lanthanide ions on the generation of free radicals from the reaction of Fe3+ and Fe2+ withtert-butyl hydroperoxide (tBuOOH) were investigated by electron spin resonance (ESR) utilizing 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) as a spin trap. Peroxyl, alkoxyl, and carbon-centered free radicals generated from Fe3+-tBuOOH system were successfully trapped by DMPO, whereas peroxyl radicals were not trapped in Fe2+-tBuOOH system. Peroxyl and alkoxyl radicals are initial radical species generated from Fe3+ and Fe2+ systems, respectively. The carbon-centered radicals (CH3) might be attributed to β-scission reaction of these alkoxyl radicals. The ESR signals of DMPO adducts of these radicals were quenched in the presence of lanthanides (Ln3+ or [Ln(cit)2]3−), in concentration-dependent fashion. Moreover, the quenching effect of Ln3+ is closely related to the time the Ln3+ was added into the free-radical-triggered systems. The results reveal that there might be various mechanisms responsible for inhibiting generation and transformation of the free radicals. If Ln3+ and iron react with peroxide simultaneously, the complex formation of Ln3+ withtBuOOH will be the main mechanism of the competitive inhibitory effect of Ln3+. Whereas if Ln3+ is added after iron, the inhibitory effect on the ESR signal of DMPO adducts might be interpreted preferentially by the coordination and magnetic dipole-dipole interaction between Ln3+ and DMPO adducts.  相似文献   

13.
Rare earth doped lead borate glasses and transparent glass-ceramics have been studied using optical spectroscopy. Based on the absorption, emission and its decay and the Judd-Ofelt calculations, several radiative and laser parameters for Ln 3+ (Ln = Pr, Nd, Eu, Dy, Er, Tm) were evaluated. The large values of luminescence lifetime, quantum efficiency of excited state and room temperature peak stimulated emission cross-section suggest efficient laser transitions of Ln 3+ ions in lead borate glasses. The obtained results indicate that lead borate glasses and glass-ceramics containing Ln 3+ ions are promising host matrices for solid-state laser applications.  相似文献   

14.
The luminescence characteristics of hydrated Ln3+ ions and their complexes with some acidic ligands have been investigated. The possibility of determining the stability of the complexes of lanthanides in solutions from the intensity of luminescence bands is shown. The influence of the characteristic features of the f-electron shell of Ln3+ on the formation of the spectrochemical series is discussed.  相似文献   

15.
New LnxSb2−xSe3 (Ln: Yb3+, Er3) based nanomaterials were synthesized by a co-reduction method. Powder XRD patterns indicate that the LnxSb2−xSe3crystals (Ln=Yb3+, Er3+, x=0.00-0.12) are isostructural with Sb2Se3. The cell parameters b and c decrease for Ln=Er3+ and Yb3+ upon increasing the dopant content (x), while a increases. SEM images show that doping of the lanthanide ions in the lattice of Sb2Se3 generally results in nanoflowers. UV-vis absorption and emission spectroscopy reveals mainly electronic transitions of the Ln3+ ions in case of Yb3+ doped nanomaterials. Emission spectra of doped materials, in addition to the characteristic red emission peaks of Sb2Se3, show additional emission bands centered at 955 nm, originating from the 2F7/22F5/2 transition (f-f transitions) of the Yb3+ ions. DSC curves indicate that Sb2Se3 has the highest thermal stability. The temperature dependence of the electrical resistivity of doped-Sb2Se3 with Yb3+ and Er3+ was studied.  相似文献   

16.
We have studied the luminescent properties of Eu2+/3+ and Yb2+ ions in strontium hexaborate SrB6O10 for excitation in the 120–400 nm region. The luminescence spectra of Ln2+ ions in SrB6O10 consist of overlapping bands in the 370–520 nm region, due to 5d → 4f transitions at several nonequivalent centers. In the excitation spectra, besides the bands associated with 4f → 5d transitions in the Ln2+ ions, we also observe a band in the 135–160 nm region due to the transitions O(2p) → B(2s,2p) within the borate anions. The luminescence of the Eu3+ ions is excited most efficiently in the region of the Eu3+ charge transfer band (λmax = 226 nm). The results obtained are compared with data for Ln in other strontium borates. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 73, No. 6, pp. 770–774, November–December, 2006.  相似文献   

17.
Phosphorescence properties are investigated in Y2O2S phosphors doped with rare-earth (lanthanoid, Ln) ions. Luminescence afterglow with a decay time of several ten milliseconds is observed at room temperature in the phosphors activated by Nd, Sm, Eu, Dy, Ho, Tm, Er, and Yb. The depths (thermal activation energies) of the traps causing the afterglow are measured with the transient luminescence method.It is concluded that the excited electron and the hole in the conduction and valence bands are trapped separately in the states (impurity levels) located in the vicinity of the Ln3+ ion. The trapping depths of the level range from 0.3 to 1.1 eV and are dependent on the electron affinity of the Ln3+ ion estimated from the energy difference between the 4fn+1 and the 4fn configurations in the 4f shell of the ion.  相似文献   

18.
The organic ligand 5-sulfosalicylic acid (SSA) is grafted by (3-aminopropyl) triethoxysilane (APTES) to achieve functionalized sulfonamide bridge (SSA-Si) which can both coordinate to Ln3+ to form luminescent center and link inorganic Si-O network through hydrolysis and condensation reaction with tetraethoxysilane (TEOS). Thus the organic–inorganic hybrid is obtained with sol-gel method. The organic polymer poly-methyl methacrylate (PMMA) acts as another precursor is prepared through the direct addition polymerization of MMA monomer in the presence of the initiator BPO (benzoyl peroxide). The two kinds of precursors are coordinated to the Ln3+ simultaneously to form organic–inorganic-polymeric hybrids which contain both inorganic Si-O-Si net and organic periodic C–C chains. In these complicated compounds we intercalate different ratios of Tb3+ and inert lanthanide ion (La3+, Gd3+, Y3+) and find that the introduction of the inert lanthanide ions can enhance the luminescence intensity. This enhancement phenomenon is called co-luminescence effect which is studied by emission spectra in this paper.  相似文献   

19.
Solid samples of polycrystalline corundum α-Al2O3 activated by triply-charged rare-earth ions RE3+ (R=Eu3+, Er3+, Pr3+) were synthesized by the sol-gel technology. Characteristic narrow-line optical absorption and luminescence spectra produced by intraconfigurational 4f-4f transitions in RE3+ ions have been measured. RE3+ ions have been established to form one dominant type of optical centers in the corundum matrix, and the energy diagram of Eu3+ and Er3+ Stark levels in corundum has been determined. Fiz. Tverd. Tela (St. Petersburg) 40, 1442–1449 (August 1998)  相似文献   

20.
A rotational analysis is performed on the 0-0 band of the so called C2 band system of antimony monofluoride. The results show that the band actually consits of two transitions designated as the f0+-X21 and e0-X21 transitions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号