首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In this review the kinetics and mechanism of oxidative dissolution of UO2(s), mainly under conditions of relevance for the safety assessment of a deep geological repository for spent nuclear fuel, are discussed. Rate constants for the elementary processes involved (oxidation of UO2 and dissolution of oxidized UO2) are used to calculate the rates of oxidative UO2(s) dissolution under various conditions (type of oxidant, oxidant concentration and HCO3 /CO3 2− concentration) for which experimental data are also available. The calculated rates are compared to the corresponding experimental values under the assumption that the experimental numbers reflect the steady-state conditions of the system. The agreement between the calculated rates and the corresponding experimental ones is very good, in particular for the higher rates. In general, the calculated rates are somewhat higher than the experimental numbers. This can be due partly to the use of initial concentrations rather than steady-state concentrations in the calculations. The kinetic data are also used to quantitatively discuss the dynamics of spent nuclear fuel dissolution under deep geological repository conditions.   相似文献   

2.
Metal species that are dissolved in water can be transported in the environment, because they can be mobile. Microorganisms can affect metal mobility by excreting organic ligands with high metal affinity. Siderophores are organic ligands with high affinities for Fe3+. They are also able to form complexes with other metals such as actinides. Many countries plan to deposit spent nuclear fuel in deep geological repositories. Microorganisms are present in these subterranean environments and could potentially affect the repository. In this study, the effect of microbial siderophores on the dissolution behavior of two fragments of a spent nuclear fuel pellet was investigated. The commercial hydroxamate siderophore, deferoxamine mesylate (DFAM), and pyoverdin siderophores, isolated from cultures of Pseudomonas fluorescens (CCUG 32456A), were used. DFAM and lyophilized pyoverdins were dissolved in synthetic groundwater to final concentrations of 10 μM and 2.5·10−2 g·L−1, respectively. The fuel pellet fragments were kept in sealed pressure vessels at 10 bars of H2. The pyoverdin solution was first tested, followed by the DFAM solution and the pure synthetic groundwater. Samples were taken on 0, 1, 5, 9 and 14 days after changing the solution in the pressure vessels. The elemental composition of samples was analyzed by means of ICP-MS. The pyoverdin solution maintained significantly higher concentrations of Np and Pu than the pure synthetic groundwater. On the 14th day the concentrations of Np and Pu in the pure synthetic groundwater were 0.01 nM and 0.13 nM, respectively, compared to 0.02 nM and 0.31 nM in the pyoverdin solution. Furthermore, spent nuclear fuel samples were observed to release Ru in the presence of both pyoverdin and DFAM. Hence, it seems that siderophores can form complexes with elements present in spent nuclear fuel.  相似文献   

3.
It is expected that spent nuclear fuel, today mainly UO2, may become exposed to groundwater after extended storage in a deep geologic repository. After 1000 years, the radioactivity of the fuel will be constituted essentially by α-emissions by long-lived actinides. The α-emissions play a significant role in determining the dissolution behavior of uranium, because the radiolysis of water results in the formation of oxidizing chemical species near the fuel surface. In order to study this effect, UO2 doped with 0.1 and 10 wt.% of a strong α-emitter (namely 238Pu) was subject to leaching at room temperature (RT) in deionized water. In order to study the mechanisms of leaching in simulated conditions, very precise and accurate techniques need to be employed. In this paper, the results obtained by inductively coupled plasma mass spectrometry coupled with ion chromatography for the determination of traces of 238Pu and uranium in aqueous leachates’ solutions are illustrated.  相似文献   

4.
Dissolution of UO2, U3O8, and solid solutions of actinides in UO2 in subacid aqueous solutions (pH 0.9–1.4) of Fe(III) nitrate was studied. Complete dissolution of the oxides is attained at a molar ratio of ferric nitrate to uranium of 1.6. During this process actinides pass into the solution in the form of U(VI), Np(V), Pu(III), and Am(III). In the solutions obtained U(VI) is stable both at room temperature and at elevated temperatures (60 °C), and at high U concentrations (up to 300 mg mL?1). Behavior of fission products corresponding to spent nuclear fuel of a WWER-1000 reactor in the process of dissolution the simulated spent nuclear fuel in ferric nitrate solutions was studied. Cs, Sr, Ba, Y, La, and Ce together with U pass quantitatively from the fuel into the solution, whereas Mo, Tc, and Ru remain in the resulting insoluble precipitate of basic Fe salt and do not pass into the solution. Nd, Zr, and Pd pass into the solution by approximately 50 %. The recovery of U or jointly U + Pu from the dissolution solution of the oxide nuclear fuel is performed by precipitation of their peroxides, which allows efficient separation of actinides from residues of fission products and iron.  相似文献   

5.
Compacted and water saturated bentonite will be used as an engineered barrier in deep geological repositories for radioactive waste in many countries. Due to the high dose rate of ionizing radiation outside the canisters holding the nuclear waste, radiolysis of the interlayer and pore water in the compacted bentonite is unavoidable. Upon reaction with the oxidizing and reducing species formed by water radiolysis (OH, e(aq), H, H2O2, H2, HO2, H3O+), the overall redox properties in the bentonite barrier may change. In this study the influence of γ-radiation on the structural Fe(II)/FeTot ratio in montmorillonite and its reactivity towards hydrogen peroxide (H2O2) was investigated in parallel experiments. The results show that under anoxic conditions the structural Fe(II)/FeTot ratio of dispersed Montmorillonite increased from ≤3 to 25-30% after γ-doses comparable to repository conditions. Furthermore, a strong correlation between the structural Fe(II)/FeTot ratio and the H2O2 decomposition rate in montmorillonite dispersions was found. This correlation was further verified in experiments with consecutive H2O2 additions, since the structural Fe(II)/FeTot ratio was seen to decrease concordantly. This work shows that the structural iron in montmorillonite could be a sink for one of the major oxidants formed upon water radiolysis in the bentonite barrier, H2O2.  相似文献   

6.
Bench scale experiments were conducted to determine the dissolution characteristics of UO2, U3O8, and UO3 in aqueous peroxide-containing carbonate solutions. The experimental parameters investigated included carbonate countercation (NH4 +, Na+, K+, and Rb+) and H2O2 concentration. The carbonate countercation had a dramatic influence on the dissolution behavior of UO2 in 1 M carbonate solutions containing 0.1 M H2O2, with the most rapid dissolution occurring in (NH4)2CO3 solution. The initial dissolution rate (y) of UO2 in 1 M (NH4)2CO3 increased linearly with peroxide concentration (x) ranging from 0.05 to 2 M according to: y = 2.41x + 1.14. The trend in initial dissolution rates for the three U oxides under study was UO3 ≫ U3O8 > UO2.  相似文献   

7.
A novel method that spent nuclear fuel is converted into nitrates with N2O4, and then nitrates are extracted with TBP in supercritical CO2 (SC-CO2), has been developed for reprocessing of spent nuclear fuel, which has a potential prospect because of its potential to decrease generation of the secondary liquid waste. In this paper, conversion of Nd2O3 with N2O4 into its nitrate under various conditions and extraction of the conversion product with TBP in SC-CO2 were investigated. When temperature was 60–120 °C, the molar ratio of H2O to Nd2O3 was from 1 to 6, and molar ratio of N2O4 to Nd2O3 was above 8, complete conversion of Nd2O3 into its nitrate was achieved. The conversion product was characterized by thermal analysis (TG-DTA), X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FT-IR) and Raman spectroscopy. Quantitative extraction of the conversion product with TBP in supercritical CO2 was also achieved under experimental conditions.  相似文献   

8.
The oxidative dissolution of silver nanoparticles (AgNPs) plays an important role in the synthesis of well‐defined nanostructured materials, and may be responsible for their activities in biological systems. In this study, we use stopped‐flow spectrophotometry to investigate the kinetics and mechanism of the oxidative dissolution of AgNPs by H2O2 in quasi‐physiological conditions. Our results show that the reaction is first order with respect to both [Ag0] and [H2O2], and parallel pathways that involve the oxidation of H2O2 and HO2? are proposed. The order of the reaction is independent of the size of the AgNPs (≈5–20 nm). The rate of dissolution increases with increasing pH from 6.0 to 8.5. At 298 K and I=0.1 M , the value of kb is five orders of magnitude higher than that of ka (where ka and kb are the rate constants for the oxidative dissolution of AgNPs by H2O2 and HO2?, respectively). In addition, the effects of surface coating and the presence of halide ions on the dissolution rates are investigated. A possible mechanism for the oxidative dissolution of AgNPs by H2O2 is proposed. We further demonstrate that the toxicities of AgNPs in both bacteria and mammalian cells are enhanced in the presence of H2O2, thereby highlighting the biological relevance of investigating the oxidative dissolution of AgNPs.  相似文献   

9.
Laser-induced fluorescence (LIF) coupled with photon-counting technique to detect molecular iodine at ultratrace level is reported. Electronic quenching rate constants for N2, NO2 and H2O, as well as for the mixture of NO2 and H2O has been measured. The application of the LIF method to monitoring129I2 in spent fuel reprocessing off-gas streams is evaluated.  相似文献   

10.
We have recently reported a kinetic and mechanistic study on oxidative dissolution of silver nanoparticles (AgNPs) by H2O2. In the present study, the parameters that govern the dissolution of AgNPs by O2 were revealed by using UV/Vis spectrophotometry. Under the same reaction conditions (Tris‐HOAc, pH 8.5, I=0.1 M at 25 °C) the apparent dissolution rate (kapp) of AgNPs (10±2.8 nm) by O2 is about 100‐fold slower than that of H2O2. The reaction rate is first‐order with respect to [Ag0], [O2], and [Tris]T, and inverse first‐order with respect to [Ag+] (where [Ag0]=total concentration of Ag metal and [Tris]T=total concentration of Tris). The rate constant is dependent on the size of AgNPs. No free superoxide (O2) and hydroxyl radical (⋅OH) were detected by trapping experiments. On the basis of kinetic and trapping experiments, an amine‐activated pathway for the oxidation of AgNPs by O2 is proposed.  相似文献   

11.
Efficient separation processes for recovering uranium and plutonium from spent nuclear fuel are essential to the development of advanced nuclear fuel cycles. The performance characteristics of a new salt‐free complexing and reducing reagent, glutarimidedioxime (H2A), are reported for recovering plutonium in a PUREX process. With a phase ratio of organic to aqueous of up to 10:1, plutonium can be effectively stripped from 30 % tributyl phosphate (TBP) in kerosene into 1 m HNO3 with H2A. The complexation‐reduction mechanism is illustrated with the combination of UV/Vis absorption spectra and the crystal structure of a PuIV complex with the reagent. The fast stripping rate and the high efficiency for stripping PuIV, through the complexation‐reduction mechanism, is suitable for use in centrifugal contactors with very short contact/resident times, thereby offering significant advantages over conventional processes.  相似文献   

12.
Hydrofluoride-based electrolytes with proton conduction have been successfully used in intermediate temperature fuel cell applications. Among the various hydrofluoride electrolytes, LiF–CaH2 and its composite with Al2O3, i.e., LiF–CaH2–Al2O3, are the most promising candidates which show more advantages than the other hydrofluorides. In this communication, we put our emphasis on the LiF–CaH2–Al2O3 electrolytes and their applications for intermediate temperature fuel cells. Furthermore, new fuel cell processes from hydride ions, H, and the electrochemical behaviour of LiF–CaH2–Al2O3 electrolytes and fuel cells are discussed in more detail.  相似文献   

13.
Rare earth oxides in spent oxide fuel from nuclear plants have poor reducibility in the electrochemical reduction process due to their high oxygen affinity and thermodynamic stability. Here, we demonstrate that the extent of their reduction can be enhanced via co-reduction of NiO in a Li2O–LiCl electrolyte for the electrochemical reduction of a simulated oxide fuel (simfuel). First, the electrochemical behaviors of Nd2O3, NiO, and Nd2O3–NiO were studied by cyclic voltammetry and voltage control electrolysis. Then, the electrochemical reduction of the simfuel containing UO2 and rare earth oxides (Nd2O3, La2O3, and CeO2) was conducted in molten LiCl salt with 1 wt.% Li2O via the co-reduction of NiO. The extent of reduction of the rare earth oxides was found to be significantly improved.  相似文献   

14.
The H2O2-photosensitized emulsion copolymerization of tetrafluoroethylene with propylene was carried out at room temperature in the presence of gaseous monomers of 50 mole-% tetrafluoroethylene content. The conversion increased almost linearly with irradiation time. The rate of polymerization was proportional to the 1.0 power of H2O2 concentration up to 3.5 × 10?3M H2O2 and the 0.46 power of H2O2 concentration above 3.5 × 10?3M H2O2. The result obtained at low H2O2 concentration was almost consistent with that obtained in the radiation-induced method. The rate of polymerization was proportional to the 0.58 power of the emulsifier concentration, and the degree of polymerization was independent of the emulsifier concentration. The H2O2-photosensitized emulsion copolymerization of tetrafluoroethylene with propylene is terminated mainly by degradative chain transfer of the propagating radical to propylene at low H2O2 concentration and by the reaction of the propagating radical with OH radical from photolysis of H2O2–aqueous solution at high H2O2 concentration.  相似文献   

15.
This study has demonstrated an interesting amplification effect of magnetic field(MF) on the hydroxylamine(HA)-promoted zero valent iron(ZVI)/H2 O2 Fenton-like system.Sulfamethoxazole(SMX) could be efficiently degraded at near neutral pH.Conditional parameters affecting the SMX degradation in the ZVI/H2 O2/HA/MF system,e.g.,pH and the dosages of ZVI,HA and H2 O2,were investigated.Unlike the acid-favorable ZVI/H2 O2 and ...  相似文献   

16.
We have measured the synchrotron‐induced photofragmentation of isolated 2‐deoxy‐D ‐ribose molecules (C5H10O4) at four photon energies, namely, 23.0, 15.7, 14.6, and 13.8 eV. At all photon energies above the molecule′s ionization threshold we observe the formation of a large variety of molecular cation fragments, including CH3+, OH+, H3O+, C2H3+, C2H4+, CHxO+ (x=1,2,3), C2HxO+ (x=1–5), C3HxO+ (x=3–5), C2H4O2+, C3HxO2+ (x=1,2,4–6), C4H5O2+, C4HxO3+ (x=6,7), C5H7O3+, and C5H8O3+. The formation of these fragments shows a strong propensity of the DNA sugar to dissociate upon absorption of vacuum ultraviolet photons. The yields of particular fragments at various excitation photon energies in the range between 10 and 28 eV are also measured and their appearance thresholds determined. At all photon energies, the most intense relative yield is recorded for the m/q=57 fragment (C3H5O+), whereas a general intensity decrease is observed for all other fragments— relative to the m/q=57 fragment—with decreasing excitation energy. Thus, bond cleavage depends on the photon energy deposited in the molecule. All fragments up to m/q=75 are observed at all photon energies above their respective threshold values. Most notably, several fragmentation products, for example, CH3+, H3O+, C2H4+, CH3O+, and C2H5O+, involve significant bond rearrangements and nuclear motion during the dissociation time. Multibond fragmentation of the sugar moiety in the sugar–phosphate backbone of DNA results in complex strand lesions and, most likely, in subsequent reactions of the neutral or charged fragments with the surrounding DNA molecules.  相似文献   

17.
The sulfide photocatalyst of Zn0.9Fe0.1S was successfully synthesized by a facile microwave‐assisted method, and Zn0.9Fe0.1S photocatalysts were characterized using SEM, EDX, XRD and BET. The specific surface area of synthesized Zn0.9Fe0.1S is 78.1 m2 g?1, and total pore volume is 0.4 cm3 g?1. With bisphenol A (BPA) as a target pollutant, photocatalytic system of UV + Zn0.9Fe0.1S + H2O2 was set up. Some influencing parameters, including H2O2 dosage, initial pH value, initial concentration of BPA and Zn0.9Fe0.1S dosage, were investigated, and the stability of the Zn0.9Fe0.1S was also studied during the photocatalysis. The optimum values of operating parameters were found at an initial pH value of 5.0, a H2O2 dosage of 0.15 mmol L?1 and a Zn0.9Fe0.1S dosage of 0.08 g when the initial concentration of BPA was 10 mg L?1. Under the optimal conditions, the highest removal rate of BPA achieved 95%. After seven consecutive reaction cycles, the degradation efficiency of BPA could still reach 85% and there was only a little dissolution of Zn2+ and Fe2+. Compared with the traditional photo‐Fenton system, the UV + Zn0.9Fe0.1S + H2O2 system can not only improve the degradation efficiency of BPA, but also reduce the dosage of H2O2 and thus reduce the processing cost.  相似文献   

18.
Proton nuclear magnetic shielding tensors are calculated for some OH?O hydrogen bonds: (H3O2)?, (H2O)2, and (H5O2)+. The effects of charge, geometry, and basis set are studied. Agreement with single crystal pulsed NMR experiments is obtained. A linear dependence between the proton chemical shift and the O?O separation is observed, correcting a previous misinterpretation of the data.  相似文献   

19.
The kinetics of H2O2 decomposition have been investigated using ZrO2 supported with transition metal ions including CuII, AgI, HgII, CoII, MnII, NiII and FeIII. At pH = 6.8, the reaction rate exhibits a first order dependence on the initial H2O2 concentration at low concentrations. The order of activity of the different catalysts is strongly dependent on the [H2O2]0 used. The reaction proceed via the formation of the peroxo-intermediate which has an inhibiting effect on the reaction rate. The rate increases with increasing pH, and attains a limiting rate at higher pH's. A reaction mechanism is proposed involving liberation of HO2 radicals from the peroxo-intermediate as the rate-determining step.  相似文献   

20.
A robust one‐compartment H2O2 fuel cell, which operates without membranes at room temperature, has been constructed by using a series of polynuclear cyanide complexes that contain Fe, Co, Mn, and Cr as cathodes, in sharp contrast to conventional H2 and MeOH fuel cells, which require membranes and high temperatures. A high open‐circuit potential of 0.68 V was achieved by using Fe3[{CoIII(CN)6}2] on a carbon cloth as the cathode and a Ni mesh as the anode of a H2O2 fuel cell by using an aqueous solution of H2O2 (0.30 M , pH 3) with a maximum power density of 0.45 mW cm?2. The open‐circuit potential and maximum power density of the H2O2 fuel cell were further increased to 0.78 V and 1.2 mW cm?2, respectively, by operation under these conditions at pH 1. No catalytic activity of Co3[{CoIII(CN)6}2] and Co3[{FeIII(CN)6}2] towards H2O2 reduction suggests that the N‐bound Fe ions are active species for H2O2 reduction. H2O2 fuel cells that used Fe3[{MnIII(CN)6}2] and Fe3[{CrIII(CN)6}2] as the cathode exhibited lower performance compared with that using Fe3[{CoIII(CN)6}2] as a cathode, because ligand isomerization of Fe3[{MIII(CN)6}2] into (FeM2)[{FeII(CN)6}2] (M=Cr or Mn) occurred to form inactive Fe? C bonds under ambient conditions, whereas no ligand isomerization of Fe3[{CoIII(CN)6}2] occurred under the same reaction conditions. The importance of stable Fe2+? N bonds was further indicated by the high performance of the H2O2 fuel cells with Fe3[{IrIII(CN)6}2] and Fe3[{RhIII(CN)6}2], which also contained stable Fe2+? N bonds. The stable Fe2+? N bonds in Fe3[{CoIII(CN)6}2], which lead to high activity for the electrocatalytic reduction of H2O2, allow Fe3[{CoIII(CN)6}2] to act as a superior cathode in one‐compartment H2O2 fuel cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号