首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The vital UV-protective and photosynthetic pigments of cyanobacteria and lichens (microbial symbioses) that dominate primary production in Antarctic desert ecosystems auto-fluoresce at short-wavelengths. A long wavelength (1064 nm) near infra-red laser has been used for non-intrusive Raman spectroscopic analysis of their ecologically significant compounds. There is now much interest in the construction of portable Raman systems for the analysis of cyanobacterial and lichen communities in the field; to this extent, Raman spectra obtained with laboratory-based systems operating at wavelengths of 852 and 1064 nm have been evaluated for potential fieldwork applications of miniaturised units. Selected test specimens of the cyanobacterial Nostoc commune, epilithic lichens Acarospora chlorophana, Xanthoria elegans and Caloplaca saxicola and the endolithic Chroococcidiopsis from Antarctic sites have been examined in the present study. Although some organisms gave useable Raman spectra with short-wavelength lasers, 1064 nm was the only excitation that was consistently excellent for all organisms. We conclude that a 1064 nm Raman spectrometer, miniaturised using an InGaAs detector, is the optimal instrument for in situ studies of pigmented communities at the limits of life on Earth. This has practical potential for the quest for biomolecules residual from any former surface or subsurface life on Mars.  相似文献   

2.
A handheld Raman spectrometer (Ahura First Defender) was tested for the unambiguous identification of biomolecules (pure amino acids, carboxylic acids, saccharides and trehalose) in the solid state under outdoor conditions (including moderate climate conditions as well as cold temperatures and high altitudes). The biomolecules investigated represent important objects of interest for future exobiological missions. Repetitive measurements carried out under identical instrumental setups confirmed the excellent reliability of the Raman spectrometer. Raman bands are found at correct wavenumbers ±3 cm−1 compared with reference values. This testing represents the first step in a series of studies. In a preliminary, challenging investigation to determine the detection limit for glycine dispersed in a powdered gypsum matrix, 10% was the lowest content confirmed unambiguously. Clearly there is a need to investigate further the detection limits of Raman spectroscopic analyses of biomolecules in more complex samples, to demonstrate the usefulness or disqualify the use of this technique for more realistic outdoor situations, such as eventual future missions to Mars.  相似文献   

3.
The Raman spectroscopic biosignatures of halotrophic cyanobacterial extremophiles from sabkha evaporitic saltpans are reported for the first time and ideas about the possible survival strategies in operation have been forthcoming. The biochemicals produced by the cyanobacteria which colonise the interfaces between large plates of clear selenitic gypsum, halite, and dolomitized calcium carbonates in the centre of the salt pans are identifiably different from those which are produced by benthic cyanobacterial mats colonising the surface of the salt pan edges in the intertidal zone. The prediction that similar geological formations would have been present on early Mars and which could now be underlying the highly peroxidised regolith on the surface of the planet has been confirmed by recent satellite observations from Mars orbit and by localised traverses by robotic surface rovers. The successful adoption of miniaturised Raman spectroscopic instrumentation as part of a scientific package for detection of extant life or biomolecular traces of extinct life on proposed future Mars missions will depend critically on interpretation of data from terrestrial Mars analogues such as sabkhas, of which the current study is an example.  相似文献   

4.
Since evaporitic rocks on the Martian surface could (or still can) serve as potential habitats for microbial life on Mars, there is a reasonable possibility that these rocks may sustain molecular remnants as evidence for the presence of extinct or extant living organisms on Mars and that β-carotene could be a suitable biomarker. In this paper, Raman microspectrometry was tested as a nondestructive method of determining the lowest detectable β-carotene content in experimentally prepared evaporitic matrices—namely, gypsum, halite and epsomite. Two excitation wavelengths were compared—514.5 nm, because of the resonance Raman enhancement in the carotenoid analysis, and 785 nm, as a more universal wavelength now much used in the detection of biomolecules terrestrially. Mixtures were measured directly as well as with a laser beam penetrating the crystals of gypsum and epsomite. We have obtained β-carotene signals at the 0.1 to 10 mg kg−1 level—the number of registered β-carotene Raman bands differed depending on the particular mineral matrix and the excitation wavelength. Concentrations of β-carotene of about one order of magnitude higher were identified when analysed through single crystals of gypsum and epsomite, respectively.  相似文献   

5.
A flow-through microdispenser has been coupled to a micro HPLC separation system and used as a solvent elimination interface for Fourier transform infrared (FTIR) and Raman spectroscopic detection of the separated compounds. Using the microdispenser picoliter sized droplets can be generated and deposited on an appropriate target placed on a computerized x, y-stage. Evaporation of volatile solvent and buffer is rapid and allows analysis of the obtained dry deposits by various techniques. Due to the destruction free character of Raman and FTIR spectroscopy they can be applied sequentially to interrogate the same deposit. In the reported application five phenolic acids typically present in wine have been separated on a C-18 column technique using a mixture of water, methanol and acetic acid as mobile phase. For spectrum acquisition infrared and Raman microscopes have been used. The spectra recorded from the dried deposits of the separated compounds agreed well with the reference spectra of corresponding components.  相似文献   

6.
Combined remote laser-induced breakdown spectroscopy (LIBS) and Raman spectroscopy investigations at a distance of 8.6m have been carried out in air and under a simulated Martian atmosphere of 933Pa (7Torr) CO(2) on calcite (CaCO(3)), gypsum (CaSO(4).2H(2)O), and elemental sulfur (S), and LIBS investigations on chalcopyrite (CuFeS(2)) and pyrite (FeS(2)). Both Raman and LIBS techniques have also been used sequentially in air on hematite-coated calcite crystals and on a sample of anhydrite covered with basaltic dust. These experiments demonstrate that by using a frequency-doubled Nd:YAG pulsed laser co-radiating 1064 nm and 532 nm laser beams with a 5x beam expander, it is possible to measure simultaneously both the Raman and LIBS spectra of calcite, gypsum and elemental sulfur by adjusting the laser power electronically. The spectra of calcite, gypsum, and elemental sulfur contain fingerprint Raman lines; however, it was not possible to measure the remote Raman spectra of pyrite and chalcopyrite because of low intensities of Raman lines. In the cases of CuFeS(2), FeS(2), and elemental sulfur, S atomic emission lines in the LIBS spectra were detected only in 7Torr of CO(2) pressure and not in air. No S atomic emission lines were detected for gypsum in air or in CO(2). In the case of coated/dusted minerals, it was possible to remove the coating or dust with the focused LIBS laser and measure the Raman spectra of subsurface minerals with a 532 nm laser excitation. The complementary nature of these two techniques is highlighted and discussed.  相似文献   

7.
Raman spectra of dipicolinic acid in crystalline and liquid environments   总被引:1,自引:0,他引:1  
Raman spectra of dipicolinic acid (DPA) are important for detection of bacterial spores, since DPA and its salts present one of their major components. The implementation of a deeply cooled CCD camera in combination with pulsed excitation at 532 nm allowed measuring well-resolved Raman spectra of the DPA in different forms. Powder preparations, crystals grown from saturated solutions and aqueous solutions of the DPA were studied. The spectral features in different environments and comparison with the spectra obtained by other methods are discussed.  相似文献   

8.
This Personal Account highlights the capabilities of spontaneous Raman microspectroscopy for studying fundamental biological processes in a single living cell. Raman microspectroscopy provides time‐ and space‐resolved vibrational Raman spectra that contain detailed information on the structure and dynamics of biomolecules in a cell. By using yeast as a model system, we have made great progress in the development of this methodology. The results that we have obtained so far are described herein with an emphasis placed on how three cellular processes, that is, cell‐division, respiration, and cell‐death, are traced and elucidated with the use of time‐ and space‐resolved structural information that is extracted from the Raman spectra. For cell‐division, compositional‐ and structural changes of various biomolecules are observed during the course of the whole cell cycle. For respiration, the redox state of mitochondrial cytochromes, which is inferred from the resonance Raman bands of cytochromes, is used to evaluate the respiration activity of a single cell, as well as that of isolated mitochondrial particles. Special reference is made to the “Raman spectroscopic signature of life”, which is a characteristic Raman band at 1602 cm?1 that is found in yeast cells. This signature reflects the cellular metabolic activity and may serve as a measure of mitochondrial dysfunction. For cell‐death, “cross‐talk” between the mitochondria and the vacuole in a dying cell is suggested. DOI 10.1002/tcr.201200008  相似文献   

9.
Raman spectra of mammoth ivory specimens have been recorded using near-infrared excitation, and comparisons made with modern Asian and African elephant ivories. Whereas the most ancient mammoth ivory (60–65 ky) showed no evidence for an organic collagen component, more recent samples of mammoth ivory indicated that some preservation had occurred, although with biodeterioration of the protein structure exhibited by the amide I and III bands in the 1200–1700 cm−1 region of the Raman spectrum. The consequent difficulties encountered when applying chemometrics methods to ancient ivory analysis (which are successful for modern specimens) are noted. In the most ancient mammoth ivory specimens, which are extensively fragmented, evidence of mineralization is seen, with the production of gypsum, calcite and limonite; Raman microscopic analysis of crystalline material inside the fissures of the mammoth ivory shows the presence of gypsum as well as cyanobacterial colonisation. The application of Raman spectroscopy to the nondestructive analysis of archaeological materials in order to gain information of relevance to their preservation or restoration is highlighted.  相似文献   

10.
Handheld Raman spectrometers (Ahura First Defender XL, Inspector Raman DeltaNu) permit the recording of acceptable and good quality spectra of a large majority of minerals outdoors and on outcrops. Raman spectra of minerals in the current study were obtained using instruments equipped with 785 nm diode lasers. Repetitive measurements carried out under an identical instrumental setup confirmed the reliability of the tested Raman spectrometers. Raman bands are found at correct wavenumber positions within ±3 cm(-1) compared to reference values in the literature. Taking into account several limitations such as the spatial resolution and problems with metallic and black and green minerals handheld Raman spectrometers equipped with 785 nm diode lasers can be applied successfully for the detection of minerals from the majority of classes of the mineralogical system. For the detection of biomarkers and biomolecules using Raman spectroscopy, e.g. for exobiological applications, the near infrared excitation can be considered as a preferred excitation. Areas of potential applications of the actual instruments include all kind of common geoscience work outdoors. Modified Raman systems can be proposed for studies of superficial or subsurface targets for Mars or Lunar investigations.  相似文献   

11.
In this study nondestructive Raman spectroscopic analysis of rosehips has been conducted by laser excitation at 1064 nm, with the objective of direct measurement of different parts of the fruit, including the inside and outside of the seeds, while preserving the integrity of the more representative chemicals. Carotenoid substances are responsible for the major Raman features in the spectra of the fruit parts; analysis of the nu(1) mode (1520 cm(-1)) strongly indicates the presence of a C(9) carotene, and analysis of the main characteristic carotene band set (C=C, C-C, and C-CH(3) stretching modes at 1520, 1157, and 1007 cm(-1), respectively) suggests the presence of beta-carotene as the main constituent. Raman spectra of the seed parts show the presence of unsaturated fatty acids, which are predominant inside the seed; these spectra also reveal the fatty products content comprises cis isomers. Analysis of the CH-stretching region bands and comparison with those in the spectra obtained from linoleic acid and commercial rosehip oil indicate that the relative band intensity of the CH-stretching mode is strongly affected by the chemical environment of the fatty acid esters present in both parts (inside and outside) of rosehips seeds.  相似文献   

12.
Detection and peak identification are key factors in developing CE (capillary electrophoresis) methodology. They have become hotspots for many reasons. The most obvious one lies in the revealing of unknown species in the application of CE to biological samples. CE-MS and CE-NMR have since been developed. CE-Raman spectroscopy was also reported1. As compared to the former two methods, the Raman spectroscopy method is highly attractive because it has the potential to provide high-informat…  相似文献   

13.
Zhang D  Vangala K  Li S  Yanney M  Xia H  Zou S  Sygula A 《The Analyst》2011,136(3):520-526
Dye conjugation is a common strategy improving the surface enhanced Raman detection sensitivity of biomolecules. Reported is a proof-of-concept study of a novel surface enhanced Raman spectroscopic tagging strategy termed as acid-cleavable SERS tag (ACST) method. Using Rhodamine B as the starting material, we prepared the first ACST prototype that consisted of, from the distal end, a SERS tag moiety (STM), an acid-cleavable linker, and a protein reactive moiety. Complete acid cleavage of the ACST tags was achieved at a very mild condition that is 1.5% trifluoroacetic acid (TFA) aqueous solution at room temperature. SERS detection of this ACST tagged protein was demonstrated using bovine serum albumin (BSA) as the model protein. While the SERS spectrum of intact ACST-BSA was entirely dominated by the fluorescent signal of STM, quality SERS spectra can be readily obtained with the acid cleaved ACST-BSA conjugates. Separation of the acid cleaved STM from protein further enhances the SERS sensitivity. Current SERS detection sensitivity, achieved with the acid cleaved ACST-BSA conjugate is ~5 nM in terms of the BSA concentration and ~1.5 nM in ACST content. The dynamic range of the cleaved ACST-BSA conjugate spans four orders of magnitudes from ~10 nM to ~100 μM in protein concentrations. Further improvement in the SERS sensitivity can be achieved with resonance Raman acquisition. This cleavable tagging strategy may also be used for elimination of protein interference in fluorescence based biomolecule detection.  相似文献   

14.
A micro high performance liquid chromatography coupled with a resonance Raman detection system is described. For highly sensitive Raman detection, aliphatic amines were derivatized with dabsyl chloride (4-dimethylaminoazobenzene-4′-sulfonyl chloride). The derivatives were separated on an ODS micro column (0.5 mm i.d. × 145 mm PTFE tube). Chromatograms were obtained by measuring the intensity of Raman scattering at 1136 cm?1 with the 488.0 nm line of an Arion laser. The lower detection limit was 1.5 ng and the RSD of relative peak height (n = 9) was 5.9% at 11 ng of methylamine derivative. Moreover, by stopping the flow of the micro HPLC system at the retention time of the individual derivatives, it was possible to measure their resonance Raman spectra.  相似文献   

15.
Tip-enhanced Raman spectroscopy (TERS) is a highly sensitive spectroscopic technique which combines the advantages of optical spectroscopy with the requirements needed for the characterization of biological nano-structures. In this study, TERS was used to investigate the applicability of this spectroscopic technique for the detection of different virus strains like avipoxvirus and adeno-associated virus. TERS spectra obtained from different particles of the same virus strain show variations in relative peak intensities and positions of most spectral features observed. These spectral variations were higher for the larger avipoxvirus particles (?≈350 nm) than for the smaller adeno-associated virus particles (?≈26 nm).  相似文献   

16.
Surface-enhanced Raman scattering (SERS) offers a tremendous multiplexing capacity for the selective detection of biomolecules in targeted research. SERS labels comprising self-assembled monolayers (SAMs) of Raman reporter molecules on the surface of metal nanoparticles are sensitive and robust probes. Advantages of a SAM include maximum sensitivity, minimal unwanted co-adsorption of molecules from the surroundings, and reproducible SERS spectra with only few dominant Raman bands—all of these independent of a particular SERS substrate. We demonstrate experimentally how to increase the multiplexing capacity of SERS labels by using mixed SAMs with up to three different Raman reporter molecules on the surface of the metal colloid. Type and stoichiometry of a particular Raman label in a multi-component SAM are additional parameters compared with one-component SAMs. All one-, two-, and three-component SAMs on gold nanospheres can be easily discriminated, either by their original SERS spectra or the corresponding bar codes. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
The absorbance and polarized absorbance spectra of single crystals of the reaction center complex isolated from Rhodobacter sphaeroides wild type strain 2.4.1 have been measured at 85 K. The crystals of the complex were obtained by the vapor diffusion technique. The spectroscopic experiments on the crystals were performed using an optical microspectrometer featuring a custom-built, liquid N2-flowing cold stage, the details of which are presented herein. These data demonstrate the feasibility of conducting optical spectroscopic experiments at cryogenic temperatures on single crystals of photosynthetic pigment-protein complexes.  相似文献   

18.
Surface-enhanced Raman scattering (SERS) spectroscopy and surface-enhanced infrared absorption (SEIRA) spectroscopy are analytical tools suitable for the detection of small amounts of various analytes adsorbed on metal surfaces. During recent years, these two spectroscopic methods have become increasingly important in the investigation of adsorption of biomolecules and pharmaceuticals on nanostructured metal surfaces. In this work, the adsorption of B-group vitamins pyridoxine, nicotinic acid, folic acid and riboflavin at electrochemically prepared gold and silver substrates was investigated using Fourier transform SERS spectroscopy at an excitation wavelength of 1,064 nm. Gold and silver substrates were prepared by cathodic reduction on massive platinum targets. In the case of gold substrates, oxidation–reduction cycles were applied to increase the enhancement factor of the gold surface. The SERS spectra of riboflavin, nicotinic acid, folic acid and pyridoxine adsorbed on silver substrates differ significantly from SERS spectra of these B-group vitamins adsorbed on gold substrates. The analysis of near-infrared-excited SERS spectra reveals that each of B-group vitamin investigated interacts with the gold surface via a different mechanism of adsorption to that with the silver surface. In the case of riboflavin adsorbed on silver substrate, the interpretation of surface-enhanced infrared absorption (SEIRA) spectra was also helpful in investigation of the adsorption mechanism.  相似文献   

19.
Raman spectra have been obtained for crystals of the organic mineral mellite, from three different sites. Mellite occurs in the frame of the Tertiary series including lignite and coaly slates at Artern (Thuringia), Tula (Russia) and Bílina (Northern Bohemia). Mellite, Al(2)C(6)(COO)(6) x 16H(2)O, can be considered as evidence of previous biological activity in the geological record, similar to other salts of carboxylic acids such as whewellite and weddellite. Assignments of the major Raman features of mellite are proposed on the basis of comparison with the parent, mellitic acid, C(6)(COOH)(6). During diagenesis and epigenesis, mellite is formed from the reaction between organic carbon rich solutions with aluminosilicates, hence, with the current interest in the adoption of Raman spectroscopy for incorporation into robotic instrumentation for space mission landers, it is important that organic minerals be included into a spectroscopic database for the recognition of biomolecular signatures for remote life-detection experiments.  相似文献   

20.
In this study, in situ surface‐enhanced Raman scattering (SERS) decoding was demonstrated in microfluidic chips using novel thin micro gold shells modified with Raman tags. The micro gold shells were fabricated using electroless gold plating on PMMA beads with diameter of 15 μm. These shells were sophisticatedly optimized to produce the maximum SERS intensity, which minimized the exposure time for quick and safe decoding. The shell surfaces produced well‐defined SERS spectra even at an extremely short exposure time, 1 ms, for a single micro gold shell combined with Raman tags such as 2‐naphthalenethiol and benzenethiol. The consecutive SERS spectra from a variety of combinations of Raman tags were successfully acquired from the micro gold shells moving in 25 μm deep and 75 μm wide channels on a glass microfluidic chip. The proposed functionalized micro gold shells exhibited the potential of an on‐chip microfluidic SERS decoding strategy for micro suspension array.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号