首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Light emitting diodes (LED), continuously operable at room temperature, have been fabricated by Si+ ion implantation into SiO2 and subsequent annealing in order to form Si nanocrystals. A highly doped poly-Si layer was used to enhance injection into nanocrystals. Visible electroluminescence (EL) was observed from the LEDs with oxide thickness 180 Å for bias voltages above 8 V. The EL decay transient was similar to stretched-exponential decays observed for photoluminescence (PL) from Si nanocrystals.  相似文献   

2.
In this paper, we summarize the results of an extensive investigation on the properties of MOS-type light emitting devices based on silicon nanostructures. The performances of crystalline, amorphous and Er-doped Si nanostructures are presented and compared. We show that all devices are extremely stable and robust, resulting in an intense room temperature electroluminescence (EL) at around 900 nm or at 1.54 μm. Amorphous nanostructures may constitute an interesting system for the monolithic integration of optical and electrical functions in Si ULSI technology. In fact, they exhibit an intense room temperature EL with the advantage to be formed at a temperature of only 900 °C, remarkably lower than the temperature needed for the formation of Si nanocrystals (1100 °C or higher). To improve the extraction of the light, we coupled the emitting system with a 2D photonic crystal structure properly fabricated with ULSI technology to reduce the total internal reflection of the emitted light. We demonstrate that the extraction efficiency is increased by a factor of 4. Finally, the light emission from devices based on Er-doped Si nanoclusters has been studied and in particular we have investigated the luminescence quenching processes limiting quantum efficiency in these devices. In fact the carrier injection, that determines the excitation of Er ions through electron–hole recombination, at the same time produces an efficient non-radiative Auger de-excitation with trapped carriers. These data are presented and the implications on the device performances discussed.  相似文献   

3.
Heterojunction light-emitting diodes with ZnO/Si structure were fabricated on both high-resistivity (p) and low-resistivity (p+) Si substrates by metal-organic chemical vapor deposition technology. Fairly good rectifications were observed from the current-voltage curves of both heterojunctions. Ultraviolet (UV) and blue-white electroluminescence (EL) from ZnO layer were observed only from ZnO/p+-Si heterojunction under forward bias at room temperature (RT), while strong infrared (IR) EL emissions from Si substrates were detected from both ZnO/p-Si and ZnO/p+-Si heterojunctions. The UV and IR EL mechanisms have been explained by energy band structures. The realization of RT EL in UV-visible and IR region on Si substrate has great applicable potential for Si-based optoelectronic integrated circuits.  相似文献   

4.
In the last decade, a strong effort has been devoted towards the achievement of efficient light emission from silicon. Among the different approaches, rare-earth doping and quantum confinement in Si nanostructures have shown great potentialities. In the present work, the synthesis and properties of low-dimensional silicon structures in SiO2 will be analyzed. All of these structures present a strong room temperature optical emission, tunable in the visible by changing the crystal size. Moreover, Si nanocrystals (nc) embedded in SiO2 together with Er ions show a strong coupling with the rare earth. Indeed each Si nc absorbs energy which is then preferentially transferred to the nearby Er ions. The signature of this interaction is the strong increase of the excitation cross section for an Er ion in the presence of Si nc with respect to a pure oxide host. We will show the properties of Er-doped Si nc embedded within Si/SiO2 Fabry–Pérot microcavities. Very narrow, intense and highly directional luminescence peaks can be obtained. Moreover, the electroluminescence (EL) properties of Si nc and Er-doped Si nc in MOS devices are investigated. It is shown that an efficient carrier injection at low voltages and quite intense room temperature EL signals can be achieved, due to the sensitizing action of Si nc for the rare earth. These data will be presented and the impact on future applications discussed.  相似文献   

5.
Various light emitting devices (LED) have been processed using Er/O- and Er/F-doped Si layered structures grown by molecular beam epitaxy (MBE) at low temperature. A comparative study has been carried out in order to provide more understanding of the electroluminescence (EL) excitation and de-excitation mechanisms in particular at a high injection current regime. Comparing the experimental results with model calculations the values of excitation cross section, σex, and effective Auger coefficient, CA, have been determined for various devices operated at different biases. Time-resolved EL measurements of these Er/O- and Er/F-doped MBE Si structures, using an experimental set-up with a time response of 200 ns, have been performed with different excitation conditions. Besides the spontaneous Er emission (700 μs), some fast EL decay processes associated with the Auger energy transfer via free carriers (4 μs), and the hot carrier effects (200 ns) have been identified.  相似文献   

6.
We report on the fabrication and performance of Si-based light sources. The devices consist of MOS structures with erbium (Er)-doped silicon rich oxide (SRO) film as gate dielectric. The devices exhibit electroluminescence (EL) at 1.54 μm at room temperature with a 0.2% external quantum efficiency. These devices show a high stability due to the silicon excess in the film. The Er-doped SRO films have been introduced in a Si/SiO2 Fabry-Perot Microcavity in order to increase the spontaneous emission rate, the extraction efficiency and the spectral purity at the resonant wavelength. The active medium in the cavity has been electrically pumped and the conduction mechanisms have been analyzed. The EL spectra have also been acquired and compared with photoluminescence (PL) ones for the same resonant cavity light-emitting device (RCLED). The EL and PL peak intensities of the on-axis emission at the resonant wavelength are over 20 times above that of the similar Er-doped SRO film without a cavity. The Si-based RCLEDs exhibit different quality factors, ranging from 60 to 170. The spectra shape and intensity have been correlated with the quality factor. A high directionality of the emitted light, due to the presence of the resonant cavity, has also been observed: the overall luminescence is confined within 10° cone from the sample normal.  相似文献   

7.
Periodic nanocrystalline (Si/CaF2) multilayers, deposited on (111) silicon by Molecular Beam Epitaxy (MBE) at room temperature, were used to fabricate simple light emitting structures and to study their electrical and optoelectronic properties. Photoluminescence (PL) and electroluminescence (EL) spectra from the same area of the devices are approximately the same, indicative of the same emission mechanism. Current–voltage characteristics reveal important phenomena in vertical carrier transport. Regions of negative differential resistance and current oscillations were observed and were tentatively attributed to resonant tunneling at high electric fields under field domain formation.  相似文献   

8.
We report on the fabrication and performances of extremely efficient Si-based light sources. The devices consist of MOS structures with erbium (Er) implanted in the thin gate oxide. The devices exhibit strong 1.54 μm electroluminescence (EL) at 300 K with a 10% external quantum efficiency, comparable to that of standard light-emitting diodes using III–V semiconductors. Er excitation is caused by hot electrons impact and oxide wearout limits the reliability of the devices. Much more stable light-emitting MOS devices have been fabricated using Er-doped silicon rich oxide (SRO) films as gate dielectric. These devices show a high stability, with an external quantum efficiency reduced to 1%. In these devices, Er pumping occurs by energy transfer from the Si nanostructures to the rare-earth ions. Finally, we have also fabricated MOS structures with Tb- and Yb-doped SiO2 which show room temperature EL at 540 nm (Tb) and 980 nm (Yb) with an external quantum efficiency of a 10% and 0.1%, respectively.  相似文献   

9.
周之琰  杨坤  黄耀民  林涛  冯哲川 《发光学报》2018,39(12):1722-1729
为了解决在单晶硅衬底上生长的InGaN/GaN多层量子阱发光二极管器件发光效率显著降低的问题,使用周期性δ型Si掺杂的GaN取代Si均匀掺杂的GaN作为n型层释放多层界面间的张应力。采用稳态荧光谱及时间分辨荧光谱测量,提取并分析了使用该方案前后的多层量子阱中辐射/非辐射复合速率随温度(10~300 K)的变化规律。实验结果表明引入δ-Si掺杂的n-GaN层后,非辐射复合平均激活能由(18±3)meV升高到(38±10)meV,对应非辐射复合速率随温度升高而上升的趋势变缓,室温下非辐射复合速率下降,体系中与阱宽涨落有关的浅能级复合中心浓度减小,PL峰位由531 nm左右红移至579 nm左右,样品PL效率随温度的衰减受到抑制。使用周期性δ型Si掺杂的GaN取代Si均匀掺杂的GaN作为生长在Si衬底上的InGaN/GaN多层量子阱LED器件n型层,由于应力释放,降低了多层量子阱与n-GaN界面、InGaN/GaN界面的缺陷密度,使得器件性能得到了改善。  相似文献   

10.
We fabricated GaAs-based spin-LED (light emitting diode) structures using half-metallic Fe3O4 as spin injectors and measured the circular polarization of the electroluminescence (EL). The circular polarization of the EL due to the spin injection was improved by the low temperature growth of the ferromagnetic layer, compared to the room temperature growth. We also studied the excitation wavelength dependence of the photoluminescence (PL) spectra and the variation of the EL spectra with increasing current. The excess carrier dependence of the EL peaks was found to be different from that of the PL peaks, which was explained by the carrier injection into the buffer layer.  相似文献   

11.
马书懿  萧勇  陈辉 《中国物理》2002,11(9):960-962
The structure of Au/Si/SiO2/p-Si has been fabricated using the magnetron sputtering technique. It has a very good rectifying behaviour. Visible electroluminescence (EL) has been observed from the Au/Si/SiO2/p-Si structure at a forward bias of 5V or larger. A broad band with one peak around 650-660 nm appears in all the EL spectra of the structure. The effects of the thickness of the Si layer in the Si/SiO2 films and of the input electrical power on EL spectra are studied systematically.  相似文献   

12.
We have studied the structural, electrical and optical properties of MOS devices, where the dielectric layer consists of a substoichiometric SiOx (x<2) thin film deposited by plasma-enhanced chemical vapor deposition. After deposition the samples were annealed at high temperature (>1000 °C) to induce the separation of the Si and the SiO2 phases with the formation of Si nanocrystals embedded in the insulating matrix. We observed at room temperature a quite intense electroluminescence (EL) signal with a peak at ∼850 nm. The EL peak position is very similar to that observed in photoluminescence in the very same device, demonstrating that the observed EL is due to electron–hole recombination in the Si nanocrystals and not to defects. The effects of the Si concentration in the SiOx layer and of the annealing temperature on the electrical and optical properties of these devices are also reported and discussed. In particular, it is shown that by increasing the Si content in the SiOx layer the operating voltage of the device decreases and the total efficiency of emission increases. These data are reported and their implications discussed. Received: 31 August 2001 / Accepted: 3 September 2001 / Published online: 17 October 2001  相似文献   

13.
Novel applications of impurity-induced disordering (IID) in semiconductor integrated optoelectronics are discussed and some requirements of the IID process are quantified. The effect of boron and fluorine as disordering species, in both GaAs/AlGaAs and GaInAs/AlGaInAs, has been studied. Because boron and fluorine are not active dopants at room temperature, low-loss high-resistivity waveguides can be formed. In the GaAs/AlGaAs system fluorine has been found to produce larger changes than boron for similar annealing conditions. Fluorine-disordered multiple quantum well waveguide structures exhibited blue shifts of up to 100 meV in the absorption edge (representing complete disordering). The absorption coefficient in partially disordered structures at near-band-edge wavelengths was as low as 4.7 dB cm–1. This absorption edge shift was accompanied by substantial changes, (>1%) in the refractive index. Boron- and fluorine-induced disordering of GaInAs/AlGaInAs quantum well structures lattice-matched to InP has also been investigated. Only small blue shifts in the exciton peak, ascribed to implantation damage, were observed in boron-implanted samples, but blue shifts of over 40 meV (again representing complete disordering) were observed in the fluorine-implanted samples.  相似文献   

14.
Electroluminescence (EL) and photoluminescence (PL) have been studied on multi-layer organic light-emitting diode (OLED) devices based on phosphorescent platinum octaethyl porphine (PtOEP) molecule. A multi-layer OLED (called Pt5) which has 100% PtOEP without doping in host as the emitting layer is investigated and compared its EL and PL characteristics with those of the other OLEDs (Pt2 and Pt3) with emitting layer of PtOEP doped in 4,4′-N,N′-dicarbazole-biphenyl (CBP) host material. It is observed that Pt5 shows a lower EL efficiency than Pt2 and Pt3. Three broad EL bands are observed at 500, 527 and 570 nm in the multi-layer device in addition to red sharp EL band due to PtOEP in Pt5, while only the red PtOEP EL is observed in Pt2 and Pt3. The 500, 527 and 570 nm EL peaks arise from absorption of the broad 525 nm Alq3 emission band by PtOEP layer. The emission from the Alq3 electron-transport layer is caused by the carrier leakage from the hole-blocking BAlq layer. The intensity of red EL due to PtOEP is much weaker in Pt5 than in Pt2. Taking into account the result of PL, it is suggested that highly efficient energy transfer from CBP host to PtOEP guest occurs in Pt2 and Pt3, giving rise to higher PtOEP luminance, while concentration quenching occurs in PtOEP layer in Pt5.  相似文献   

15.
Near band edge photoluminescence has been obtained from Si1−yCy quantum well (QW) and neighboring Si1−xGex/Si1−yCy double QW (DQW) structures. Enhanced no-phonon recombination is observed from the DQW structures and it is attributed to a breaking of the k-selection rule in the presence of the heterointerface. The luminescence persists for measurement temperatures up to 30–50 K and the intensity exhibits a quenching behavior with an activation energy equal to 8–20 meV. In electroluminescence only recombination in the Si1−xGex layer has been observed from neighboring Si1−xGex and Si1−yCy DQW structures.  相似文献   

16.
We report the fabrication of Si quantum dots (QDs)/SiO2 multilayers by using KrF excimer laser (248 nm) crystallization of amorphous Si/SiO2 multilayered structures on ITO coated glass substrates. Raman spectra and transmission electron microscopy demonstrate the formation of Si QDs and the size can be controlled as small as 1.8 nm. After laser crystallization, Al electrode is evaporated to obtain light emitting devices and the room temperature electroluminescence (EL) can be detected with applying the DC voltage above 8 V on the top gate electrode. The luminescent intensity increases with increasing the applied voltage and the micro-watt light output is achieved. The EL behaviors for samples with different Si dot sizes are studied and it is found that the corresponding external quantum efficiency is significantly enhanced in sample with ultra-small sized Si QDs.  相似文献   

17.
We have recently evidenced a junction magnetoresistance (JMR) signal of about 5% in magnetic tunnel junctions (MTJs) with ZnS as tunnel barrier layer. The MTJ were grown by magnetron sputtering on Si (1 1 1) substrate at room temperature and have the following structure: Fe6 nmCu30 nmCoFe1.8 nmRu0.8 nmCoFe3 nmZnS2 nmCoFe1 nmFe4 nmCu10 nmRu3 nm.

The hard magnetic bottom electrode consists of an artificial antiferromagnetic structure in which the rigidity is ensured by the antiferromagnetic exchange coupling between two FeCo layers through an Ru spacer layer. The magneto-transport for these MTJ has been studied at various temperatures to gain understanding of the transport mechanism in such junctions. A strong and linear increase of the JMR is observed as the temperature is decreased to reach 10% at a low temperature, while the conductance decreases with decreasing temperature. To understand the mechanism at the origin of these behaviors, the contribution of magnon is taken into account. It is concluded that the observed behaviors are not only related to the magnon contribution but that resonant low-level states inside the barrier can assist the tuneling transport.  相似文献   


18.
The annealing behaviors of photoluminescence of SiOx and Er-doped SiOx grown by molecular beam epitaxy in the wavelength range of visible and infrared light are studied. For SiOx, four PL bands located at 510, 600, 716 and 810 nm, respectively, are observed. For Er-doped SiOx, the 716 nm band, which is believed to be originated from the electron–hole recombination at the interface between crystalline Si and amorphous SiO2, disappears in the annealing temperature range of 500–900°C. It is suggested the enhancement of Er luminescence is partially due to the energy transfer from the recombination at the interface between crystalline Si and SiO2 to Er ions.  相似文献   

19.
何超  刘智  成步文 《中国物理 B》2016,25(12):126104-126104
We report a lateral Ge-on-Si ridge waveguide light emitting diode(LED) grown by ultrahigh vacuum chemical vapor deposition(UHV-CVD). Direct-bandgap electroluminescence(EL) of Ge waveguide under continuous current is observed at room temperature. The heat-enhancing luminescence and thermal radiation-induced superlinear increase of edge output optical power are found. The spontaneous emission and thermal radiation based on the generalized Planck radiation law are calculated and fit very well to the experimental results. The Ge waveguides with different lengths are studied and the shorter one shows stronger EL intensity.  相似文献   

20.
LB膜的电致发光及其器件   总被引:4,自引:0,他引:4       下载免费PDF全文
欧阳健明 《发光学报》2000,21(4):363-368
Langmuir-Blodgett(LB)膜具有超薄、均匀、取向和厚度可控及在分子水平上可任意组装等特点,以LB膜为发光层所制备的电致发光(EL)器件,发光层的组成和厚度精确可控,制备条件温和,给发光层的制备开辟了一条新途径。论述用作EL器件的发光层、电子传输材料(ETL)和空穴传输层(HTL)的LB膜材料。并以8-羟基喹啉的两亲配合物LB膜为重点,介绍了LB膜的层数、沉积压等制膜参数对EL器件性能的影响,讨论了IB膜EL器件的发光机理,最后,对IB膜EL器件存在的问题及今后的发展前景进行了评述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号