首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To enable the development of a tandem mass spectrometry (MS/MS) based methodology for selective protein identification and differential quantitative analysis, a novel derivatization strategy is proposed, based on the formation of a "fixed-charge" sulfonium ion on the side-chain of a methionine amino acid residue contained within a protein or peptide of interest. The gas-phase fragmentation behavior of these side chain fixed charge sulfonium ion containing peptides is observed to result in exclusive loss of the derivatized side chain and the formation of a single characteristic product ion, independently of charge state or amino acid composition. Thus, fixed charge containing peptide ions may be selectively identified from complex mixtures, for example, by selective neutral loss scan mode MS/MS methods. Further structural interrogation of identified peptide ions may be achieved by subjecting the characteristic MS/MS product ion to multistage MS/MS (MS3) in a quadrupole ion trap mass spectrometer, or by energy resolved "pseudo" MS3 in a triple quadrupole mass spectrometer. The general principles underlying this fixed charge derivatization approach are demonstrated here by MS/MS, MS3 and "pseudo" MS3 analysis of side chain fixed-charge sulfonium ion derivatives of peptides containing methionine formed by reaction with phenacylbromide. Incorporation of "light" and "heavy" isotopically encoded labels into the fixed-charge derivatives facilitates the application of this method to the quantitative analysis of differential protein expression, via measurement of the relative abundances of the neutral loss product ions generated by dissociation of the light and heavy labeled peptide ions. This approach, termed "selective extraction of labeled entities by charge derivatization and tandem mass spectrometry" (SELECT), thereby offers the potential for significantly improved sensitivity and selectivity for the identification and quantitative analysis of peptides or proteins containing selected structural features, without requirement for extensive fractionation or otherwise enrichment from a complex mixture prior to analysis.  相似文献   

2.
Targeted ion parking (or TIPing) is the first quantitative application of ion/ion reactions for mass spectrometry. In TIPing, intact biotherapeutic proteins are electrosprayed as intact molecules (no digestion) and, as expected, many multiply protonated species are produced (e.g., (M + 7H)7+, (M + 8H)8+, etc.). Several of these multiply charged species are selectively isolated using a quadrupole mass analyzer and then contained in a linear ion trap. The protein ions are then subjected to a proton-transfer reaction with a reagent anion. The ions undergo sequential charge reduction (e.g., to (M + 6H)6+) during a defined reaction period. Applying a low-amplitude waveform to the trap during this reaction time stops the ion/ion reaction at a chosen (and predicted) charge state for the protein. This funnels the analyte ions into a single channel with relatively high efficiency (>-50% of reactant ion signal is converted into product ion signal) that can be used for quantitation. In TIPing, the target protein’s molecular weight and charge state distribution are the only prerequisite knowledge required. This information can be acquired experimentally or can be easily predicted based upon amino acid sequences. Preliminary data for a biotherapeutic protein, a domain antibody, were collected using TIPing coupled online with liquid chromatography (LC-TIPing). The LC-TIPing data demonstrate a linear response for samples from 10–1000 ng/mL extracted from a complex plasma sample, demonstrating the analytical potential for TIPing.  相似文献   

3.
Technological and scientific advances over the past decade have enabled protein identification and characterization strategies to be developed that are based on subjecting intact protein ions and large protein fragments directly to tandem mass spectrometry. These approaches are referred to collectively as 'top down' to contrast them with 'bottom up' approaches whereby protein identification is based on mass spectrometric analysis of peptides derived from proteolytic digestion, usually with trypsin. A key step in enabling top down approaches has been the ability to assign tandem mass spectrometer product ion identities, which can be done either via high resolving power or through product ion charge state manipulation. The ability to determine product ion charge states has permitted studies of the reactions, including dissociation, ion-molecule reactions, ion-electron reactions and ion-ion reactions of high-mass, multiply charged protein ions. Electrospray ionization combined with high magnetic field strength Fourier transform ion cyclotron resonance has proven to be particularly powerful for detailed protein characterization owing to its high mass resolution and mass accuracy and its ability to effect electron capture-induced dissociation. Other types of tandem mass spectrometers are also beginning to find increasing use in top down protein identification/characterization studies. Charge state manipulation via ion-ion reactions in electrodynamic ion traps, for example, enables top down strategies to be considered using instruments with relatively modest mass resolution capabilities. Precursor ion charge state manipulation techniques have also recently been demonstrated to be capable of concentrating and charge-state purifying proteins in the gas phase. Advances in technologies applied to the structural analysis of whole protein ions and in understanding their reactions, such as those described here, are providing new options for the study of complex protein mixtures.  相似文献   

4.
High mass measurement accuracy (MMA) is demonstrated for intact proteins and subsequent collision-induced dissociation product ions using internal calibration. Internal calibration was accomplished using a dual electrospray ionization source coupled with a hybrid quadrupole Fourier transform ion cyclotron resonance (Q-FT-ICR) mass spectrometer. Initially, analyte ions generated via the first electrospray (ESI) emitter are isolated and dissociated in the external quadrupole. This event is followed by a simultaneous switch to the calibrant ion ESI emitter and a disablement of the isolation and activation of the external quadrupole such that a broad m/z range of calibrant ions are accumulated before injecting the analyte/calibrant ion mixture into the ICR cell. Two different internal calibrant solutions were utilized in these studies to evaluate this approach for the top-down characterization of melittin and ubiquitin. While external calibration of protein fragments resulted in absolute MMA greater than 16 ppm, internal standardization significantly improved upon the MMA of both the intact proteins and their products ions which ranged from -2.0 ppm to 1.1 ppm, with an average of -0.9 ppm. This method requires limited modification to ESI-FT-ICR mass spectrometers and is applicable for both positive and negative ionization modes.  相似文献   

5.
A whole-protein tandem mass spectrometry approach for protein identification based on precursor ion charge state concentration via ion/ion reactions, ion-trap collisional activation, ion/ion proton-transfer reactions involving the product ions, and mass analysis over a narrow m/z range (up to m/z 2000) is described and evaluated. The experiments were carried out with a commercially available electrospray ion-trap instrument that has been modified to allow for ion/ion reactions. Reaction conditions and the approach to searching protein databases were developed with the assumption that the resolving power of the mass analyzer is insufficient to distinguish charge states on the basis of the isotope spacings. Ions derived from several charge states of cytochrome c, myoglobin, ribonuclease A, and ubiquitin were used to evaluate the approach for protein identification and to develop a two-step procedure to database searching to optimize specificity. The approach developed with the model proteins was then applied to whole cell lysate fractions of Saccharomyces cerevisiae. The results are illustrated with examples of assignments made for three a priori unknown proteins, each selected randomly from a lysate fraction. Two of the three proteins were assigned to species present in the database, whereas one did not match well any database entry. The combination of the mass measurement and the product ion masses suggested the possibility for the oxidation of two methionine residues of a protein in the database. The examples show that this limited whole-protein characterization approach can provide insights that might otherwise be lacking with approaches based on complete enzymatic digestion.  相似文献   

6.
While collisionally activated dissociation (CAD) pathways for peptides are well characterized, those of intact proteins are not. We systematically assigned CAD product ions of ubiquitin, myoglobin, and bovine serum albumin generated using high-yield, in-source fragmentation. Assignment of >98% of hundreds of product ions implies that the fragmentation pathways described are representative of the major pathways. Protein dissociation mechanisms were found to be modulated by both source declustering potential and precursor ion charge state. Like peptides, higher charge states of proteins fragmented at lower energies next to Pro, via mobile protons, while lower charge states fragmented at higher energies after Asp and Glu, via localized protons. Unlike peptides, however, predominant fragmentation channels of proteins occurred at intermediate charge states via non-canonical mechanisms and produced extensive internal fragmentation. The non-canonical mechanisms include prominent cleavages C-terminal to Pro and Asn, and N-terminal to Ile, Leu, and Ser; these cleavages, along with internal fragments, led to a 45% increase in sequence coverage, improving the specificity of top-down protein identification. Three applications take advantage of the different mechanisms of protein fragmentation. First, modulation of declustering potential selectively fragments different charge states, allowing the source region to be used as the first stage of a low-resolution tandem mass spectrometer, facilitating pseudo-MS3 of product ions with known parent charge states. Second, development and integration of automated modulation of ion funnel declustering potential allows users access to a particular fragmentation mechanism, yielding facile cleavage on a liquid chromatography timescale. Third, augmentation of a top-down search engine improved protein characterization.  相似文献   

7.
A strategy involving the fixed-charge sulfonium ion derivatization, stable isotope labeling, capillary high- performance liquid chromatography and automated data dependent neutral loss scan mode tandem mass spectrometry (MS/MS) and "pseudo multiple mass spectrometry (MS(3))" product ion scans in a triple quadrupole mass spectrometer has been developed for the "targeted" gas-phase identification, characterization and quantitative analysis of low abundance methionine-containing peptides present within complex protein digests. Selective gas-phase "enrichment" and identification is performed via neutral loss scan mode MS/MS, by low energy collision-induced dissociation of the derivatized methionine side chain, resulting in the formation of a single characteristic product ion. Structural characterization of identified peptides is then achieved by automatically subjecting the characteristic neutral loss product ion to further dissociation by data dependent product ion scan mode pseudo MS(3) under higher collision energy conditions. Quantitative analysis is achieved by measurement of the abundances of characteristic product ions formed by sequential neutral loss scan mode MS/MS experiments from "light" ((12)C) and "heavy" ((13)C) stable isotope encoded fixed-charge derivatized peptides. In contrast to MS-based quantitative analysis strategies, the neutral loss scan mode MS/MS method employed here was able to achieve accurate quantification for individual peptides at levels as low as 100 fmol and at abundance ratios ranging from 0.1 to 10, present within a complex protein digest.  相似文献   

8.
Identifying unknown proteins has become a central focal point for proteomic and biopharmaceutical development laboratories. Our laboratory investigated using quadrupole time-of-flight mass spectrometry (Qq/TOFMS) for the analysis of intact proteins for the purpose of identifying unknowns while limiting the number of sample-handling steps between protein extraction and identification. Eight standard proteins, both unmodified and disulfide-bonded and ranging in mass from 5 to 66 kDa, were analyzed using nanoelectrospray and collision-induced dissociation to generate peptide sequence tags. An MS analysis, followed by MS/MS analyses on two to five individual protein charge states, were obtained to make an identification. Peptide sequence tags were extracted from the MS/MS data and used, in conjunction with molecular mass and source origin, to obtain protein identifications using the web-based search engine ProteinInfo (www.proteometrics.com). All of the proteins were unambiguously identified from the input data, after which, all of the major product ions were identified for structural information. In most cases, N- and/or C-terminal ions, and also stretches of consecutive product ions from the protein interior, were observed. This method was applied to the analysis and identification of an unknown detected via reversed-phase high-performance liquid chromatography.  相似文献   

9.
Electron transfer dissociation (ETD)-based top-down mass spectrometry (MS) is the method of choice for in-depth structure characterization of large peptides, small- and medium-sized proteins, and non-covalent protein complexes. Here, we describe the performance of this approach for structural analysis of intact proteins as large as the 80 kDa serotransferrin. Current time-of-flight (TOF) MS technologies ensure adequate resolution and mass accuracy to simultaneously analyze intact 30–80 kDa protein ions and the complex mixture of their ETD product ions. Here, we show that ETD TOF MS is efficient and may provide extensive sequence information for unfolded and highly charged (around 1 charge/kDa) proteins of ~30 kDa and structural motifs embedded in larger proteins. Sequence regions protected by disulfide bonds within intact non-reduced proteins oftentimes remain uncharacterized due to the low efficiency of their fragmentation by ETD. For serotransferrin, reduction of S–S bonds leads to significantly varied ETD fragmentation pattern with higher sequence coverage of N- and C-terminal regions, providing a complementary structural information to top-down analysis of its oxidized form.
Figure
ETD TOF MS provides extensive sequence information for unfolded and highly charged proteins of ~30 kDa and above. In addition to charge number and distribution along the protein, disulfide bonds direct ETD fragmentation. For intact non-reduced 80 kDa serotransferrin, sequence regions protected by disulfide bonds oftentimes remain uncharacterized. Reduction of disulfide bonds of serotransferrin increases ETD sequence coverage of its N- and C-terminal regions, providing a complementary structural information to the top-down analysis of its oxidized form  相似文献   

10.
This communication demonstrates that gentle infrared laser heating can remove unwanted buffer adducts from a gas-phase protein complex without dissociating the complex itself. Specifically, noncovalent complexes of the oligopeptide-binding protein, OppA, bound to either (Ala)3 or LysTrpLys were electrosprayed from aqueous buffer solution into a 9.4 tesla Fourier transform ion cyclotron resonance mass spectrometer. In addition to the intact complexes, several additional buffer adduct species were produced under the conditions of the experiment. Irradiation of the trapped ion population with a continuous-wave infrared CO2 laser at relatively low power (2.5 W) for 1 s dissociated the buffer adducts but retained the intact protein:peptide complexes. Adduct-free complex(es) were then readily identified, and signal-to-noise ratio also increased by an order of magnitude because the same number of protein ions are distributed over fewer species. Higher IR power (5 W for 1 s) dissociated the adduct-free complex(es) without internal fragmentation. The present in-trap clean-up technique may prove especially useful for identifying and screening the combinatorial library ligands most strongly bound to a receptor in the gas phase.  相似文献   

11.
Direct analysis of intact proteins on a chromatographic time scale is demonstrated on a modified linear ion trap mass spectrometer using sequential ion/ion reactions, electron transfer and proton transfer, to dissociate the sample and to convert the resulting peptide fragments to a mixture of singly and doubly charged species. Proteins are converted to gas-phase, multiply-charged, positive ions by electrospray ionization and then allowed to react with fluoranthene radical anions. Electron transfer to the multiply charged protein promotes random fragmentation of amide bonds along the protein backbone. Multiply charged fragment ions are then deprotonated in a second ion/ion reaction with even-electron benzoate anions. M/z values for the resulting singly and doubly charged ions are used to read a sequence of 15-40 amino acids at both the N-terminus and the C-terminus of the protein. This information, along with the measured mass of the intact protein, are employed to identify known proteins and to detect the presence of post-translational modifications. In this study, we analyze intact proteins from the Escherchia coli 70S ribosomal protein complex and identify 46 of the 55 known unique components in a single, 90 min, on-line, chromatography experiment. Truncated versions of the above proteins along with several post-translational modifications are also detected.  相似文献   

12.
The goal of proteomics research is to be able to identify and quantify the vast numbers of proteins within an organism or tissue. "Top-down" methods address this goal without the need for proteolytic digestion prior to mass analysis. We report here an approach for top-down protein identification that has been implemented on a commercially available, unmodified Qq-TOF mass spectrometer. Intact protein molecular ions first undergo cone fragmentation in the electrospray inlet. Conventional MS/MS is then performed on a mass selected cone fragment using CID in the Qq interface of the Qq-TOF mass spectrometer to generate a sequence tag through a pseudo-MS3 experiment. Seven proteins varying in molecular weight between 11 and 66 kDa were chosen to demonstrate applicability of method. After the molecular weight of the intact protein was determined, the cone voltage was varied to induce fragmentation. Cone fragment ions were then further dissociated using conventional CID, and the resulting MS/MS spectra were processed and analyzed for sequence tags. Sequence tags were easily identified from a MS/MS spectrum of a cone induced fragment ion both manually and through a de novo sequencing program included in the software associated with the mass spectrometer. Sequence tags were subjected to database searching using the PeptideSearch program of EMBL, and all protein sequence tags gave unambiguous search results. In all cases, sequence tags were found to originate from the n- and/or c-termini of the proteins.  相似文献   

13.
N-Terminally acetylated thymosin beta4, a species implicated for use as a cancer biomarker, was identified in a human lung cancer cell line using ion trap tandem mass spectrometry at the whole protein level. Ion-ion proton transfer reactions were used for parent ion concentration/manipulation and to simplify interpretation of product ion spectra. Dissociation data for the +6 to +3 charge states are reported. As is usually the case, structural information available from the ion trap collisional activation of the protein is sensitive to parent ion charge state. Each parent ion charge state selected, however, provided sufficient information to make a confident identification. Furthermore, each charge state provided relatively rich fragmentation. Therefore, any of the charge states can be used to detect with high specificity thymosin beta(4) in a complex protein mixture. There are advantages associated with the rapid detection of protein biomarkers at the whole protein level, as opposed to the peptide level following protein digestion, particularly for relatively small protein and polypeptide biomarkers. Having identified and characterized the protein, product ion spectra obtained directly, without recourse to ion-ion proton transfer reactions, can be used for library matching. However, ion-ion proton transfer reactions for parent ion concentration and charge state purification are advantageous in addressing relatively complex mixtures.  相似文献   

14.
Predicting the fragmentation patterns of proteins would be beneficial for the reliable identification of intact proteins by mass spectrometry. However, the ability to accurately make such predictions remains elusive. An approach to predict the specific cleavage sites in whole proteins resulting from collision-induced dissociation by use of an improved electrostatic model for calculating the proton configurations of highly-charged protein ions is reported. Using ubiquitin, cytochrome c, lysozyme and β-lactoglobulin as prototypical proteins, this approach can be used to predict the fragmentation patterns of intact proteins. For sufficiently highly charged proteins, specific cleavages occur near the first low-basicity amino acid residues that are protonated with increasing charge state. Hybrid QM/QM′ (QM=quantum mechanics) and molecular dynamics (MD) simulations and energy-resolved collision-induced dissociation measurements indicated that the barrier to the specific dissociation of the protonated amide backbone bond is significantly lower than competitive charge remote fragmentation. Unlike highly charged peptides, the protons at low-basicity sites in highly charged protein ions can be confined to a limited sequence of low-basicity amino acid residues by electrostatic repulsion, which results in highly specific fragmentation near the site of protonation. This research suggests that the optimal charge states to form specific sequence ions of intact proteins in higher abundances than the use of less specific ion dissociation methods can be predicted a priori.  相似文献   

15.
We developed an efficient and convenient strategy for protein identification and glycosylation analysis of a small amount of unknown glycoprotein in a biological sample. The procedure involves isolation of proteins by electrophoresis and mass spectrometric peptide/glycopeptide mapping by LC/ion trap mass spectrometer. For the complete glycosylation analysis, proteins were extracted in intact form from the gel, and proteinase-digested glycoproteins were then subjected to LC/multistage tandem MS (MSn) incorporating a full mass scan, in-source collision-induced dissociation (CID), and data-dependent MSn. The glycopeptides were localized in the peptide/glycopeptide map by using oxonium ions such as HexNAc+ and NeuAc+, generated by in-source CID, and neutral loss by CID-MS/MS. We conducted the search analysis for the glycopeptide identification using search parameters containing a possible glycosylation at the Asn residue with N-acetylglucosamine (203 Da). We were able to identify the glycopeptides resulting from predictable digestion with proteinase. The glycopeptides caused by irregular cleavages were not identified by the database search analysis, but their elution positions were localized using oxonium ions produced by in-source CID, and neutral loss by the data-dependent MSn. Then, all glycopeptides could be identified based on the product ion spectra which were sorted from data-dependent CID-MSn spectra acquired around localized positions. Using this strategy, we successfully elucidated site-specific glycosylation of Thy-1, glycosylphosphatidylinositol (GPI)-anchored proteins glycosylated at Asn23, 74, and 98, and at Cys111. High-mannose-type, complex-type, and hybrid-type oligosaccharides were all found to be attached to Asn23, 74 and 98, and four GPI structures could be characterized. Our method is simple, rapid and useful for the characterization of unknown glycoproteins in a complex mixture of proteins.  相似文献   

16.
A simple ion trap/ion mobility/time-of-flight (TOF) mass spectrometer has been coupled with nanoflow liquid chromatography to examine the feasibility of analyzing mixtures of intact proteins. In this approach proteins are separated using reversed-phase chromatography. As components elute from the column, they are electrosprayed into the gas phase and separated again in a drift tube prior to being dispersed and analyzed in a TOF mass spectrometer. The mobilities of ions through a buffer gas depend upon their collision cross sections and charge states; separation based on these gas-phase parameters provides a new means of simplifying mass spectra and characterizing mixtures. Additionally it is possible to induce dissociation at the exit of the drift tube and examine the fragmentation patterns of specific protein ion charge states and conformations. The approach is demonstrated by examining a simple three-component mixture containing ubiquitin, cytochrome c, and myoglobin and several larger prepared protein mixtures. The potential of this approach for use in proteomic applications is considered.  相似文献   

17.
Transfer RNA is a class of highly modified and structured non-coding RNA molecules generally comprised of 74–95 nucleotides. In this study, tandem mass spectrometry of intact multiply charged tRNA anions of roughly 25 kDa in mass has been demonstrated using a quadrupole/time-of-flight tandem mass spectrometer adapted for ion/ion reaction studies. The sample proved to be a mixture of tRNA molecules. The mass of the most abundant component of the mixture was not consistent with that of the nominal identity of the tRNA from the supplier, viz., tRNAphe; rather, the mass was consistent with tRNAPhe bearing an incomplete 3′-terminus. Multiply-charged anions from the major components were isolated in the gas phase and subjected to ion trap collision-induced dissociation without subsequent ion/ion reactions. Abundant fragments from the 5′- and 3′-termini of the molecule could be used to identify the major component as tRNAphe-3′adenosine (without 3′-phosphorylation). Roughly 15% of the primary sequence of the intact tRNA was unambiguously reflected in the product ion spectrum. The existence of a possible tRNAPhe variant and the intact tRNAPhe was also supported by ion trap CID data. The multiply-charged fragment ions derived from tRNAPhe-3′adenosine were further charge-reduced to mostly singly- and doubly-charged species via proton transfer ion/ion reactions with benzoquinoline cations. The resulting reduction in spectral overlap and charge state ambiguity simplified interpretation of the product ion spectrum and allowed for the identification of product ions from roughly 60% of the sequence.  相似文献   

18.
When presented with a mixture of intact proteins, electrospray ionization with Fourier-transform mass spectrometry (ESI-FTMS) has the capability to obtain direct fragmentation information from isolated ions. However, the automation of this capability has not been achieved to date. We have developed software for unattended acquisition of protein tandem mass spectrometry (MS/MS) data and batch processing of the resulting files for identification of whole proteins. Mixtures of both protein standards (8-29 kDa) and Methanococcus jannaschii cytosolic proteins (up to six components + 20 kDa) were infused via an autosampler, and MS/MS data were acquired without human intervention. The acquisition software recognizes ESI charge state patterns, generates protein-specific isolation waveforms on-the-fly, and fragments ions using two different infrared laser times. In addition to protein standards, five wild-type proteins (7-14 kDa) were identified automatically with 100% sequence coverage from the M. jannaschii database. The software underpins a measurement platform for sample-dependent acquisition of MS/MS data for whole proteins, a critical step to realize proteomics with 100% sequence coverage in a higher throughput setting.  相似文献   

19.
Selective and nonselective cleavages in ion trap low-energy collision-induced dissociation (CID) experiments of the fragments generated from in-source decay (ISD) with matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) of intact proteins are described in both positive and negative ion modes. The MALDI-ISD spectra of the proteins demonstrate common, discontinuous, abundant c- and z′-ions originating from cleavage at the N–Cα bond of Xxx-Asp/Asn and Gly-Xxx residues in both positive- and negative-ion modes. The positive ion CID of the c- and z′-ions resulted in product ions originating from selective cleavage at Asp-Xxx, Glu-Xxx and Cys-Xxx residues. Nonselective cleavage product ions rationalized by the mechanism of a “mobile proton” are also observed in positive ion CID spectra. Negative ion CID of the ISD fragments results in complex product ions accompanied by the loss of neutrals from b-, c-, and y-ions. The most characteristic feature of negative ion CID is selective cleavage of the peptide bonds of acidic residues, Xxx-Asp/Glu/Cys. A definite influence of α-helix on the CID product ions was not obtained. However, the results from positive ion and negative ion CID of the MALDI-ISD fragments that may have long α-helical domains suggest that acidic residues in helix-free regions tend to degrade more than those in helical regions.
Figure
?  相似文献   

20.
A novel method for separating ions according to their charge state using a quadrupole time-of-flight mass spectrometer is presented. The benefits of charge state separation are particularly apparent in protein identification applications at low femtomole concentration levels, where in conventional TOF MS spectra peptide ions are often lost in a sea of chemical noise. When doubly and triply charged tryptic peptide ions need to be filtered from singly charged background ions, the latter are suppressed by two to three orders of magnitude, while from 10-50% of multiply charged ions remain. The suppression of chemical noise reduces the need for chromatography and can make this experimental approach the electrospray equivalent of conventional MALDI peptide maps. If unambiguous identification cannot be achieved, MS/MS experiments are performed on the precursor ions identified through charge separation, while the previously described Q2-trapping duty cycle enhancement is tuned for approximately 1.4 of the precursor m/z to enhance intensities of ions with m/z values above that of the precursor. The resulting product ion spectra contain few fragments of impurities and provide quick and unambiguous identification through database search. The multiple charge separation technique requires minimal tuning and may become a useful tool for analysis of complex mixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号