首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we solve large scale ill-posed problems, particularly the image restoration problem in atmospheric imaging sciences, by a trust region-CG algorithm. Image restoration involves the removal or minimization of degradation (blur, clutter, noise, etc.) in an image using a priori knowledge about the degradation phenomena. Our basic technique is the so-called trust region method, while the subproblem is solved by the truncated conjugate gradient method, which has been well developed for well-posed problems. The trust region method, due to its robustness in global convergence, seems to be a promising way to deal with ill-posed problems.  相似文献   

2.
In this paper, we present an adaptive trust region method for solving unconstrained optimization problems which combines nonmonotone technique with a new update rule for the trust region radius. At each iteration, our method can adjust the trust region radius of related subproblem. We construct a new ratio to adjust the next trust region radius which is different from the ratio in the traditional trust region methods. The global and superlinear convergence results of the method are established under reasonable assumptions. Numerical results show that the new method is efficient for unconstrained optimization problems.  相似文献   

3.
In this paper, we propose a nonmonotone adaptive trust region method for unconstrained optimization problems. This method can produce an adaptive trust region radius automatically at each iteration and allow the functional value of iterates to increase within finite iterations and finally decrease after such finite iterations. This nonmonotone approach and adaptive trust region radius can reduce the number of solving trust region subproblems when reaching the same precision. The global convergence and convergence rate of this method are analyzed under some mild conditions. Numerical results show that the proposed method is effective in practical computation.  相似文献   

4.
In this paper we present a nonmonotone trust region method for nonlinear least squares problems with zero-residual and prove its convergence properties. The extensive numerical results are reported which show that the nonmonotone trust region method is generally superior to the usual trust region method.  相似文献   

5.
This paper concerns a filter technique and its application to the trust region method for nonlinear programming (NLP) problems. We used our filter trust region algorithm to solve NLP problems with equality and inequality constraints, instead of solving NLP problems with just inequality constraints, as was introduced by Fletcher et al. [R. Fletcher, S. Leyffer, Ph.L. Toint, On the global converge of an SLP-filter algorithm, Report NA/183, Department of Mathematics, Dundee University, Dundee, Scotland, 1999]. We incorporate this filter technique into the traditional trust region method such that the new algorithm possesses nonmonotonicity. Unlike the tradition trust region method, our algorithm performs a nonmonotone filter technique to find a new iteration point if a trial step is not accepted. Under mild conditions, we prove that the algorithm is globally convergent.  相似文献   

6.
This paper presents a new trust region algorithm for solving a class of composite nonsmooth optimizations. It is distinguished by the fact that this method does not enforce strict monotonicity of the objective function values at successive iterates and that this method extends the existing results for this type of nonlinear optimization with smooth, or piecewise smooth, or convex objective functions or their composition. It is proved that this algorithm is globally convergent under certain conditions. Finally, some numerical results for several optimization problems are reported which show that the nonmonotonic trust region method is competitive with the usual trust region method.  相似文献   

7.
欧宜贵  侯定丕 《东北数学》2002,18(4):335-342
This paper preasents a new trust region algorithm for solving a class of composite nonsmooth optimizations.It is distinguished by the fact that this method does not enforce strict monotonicity of the objective function values at successive itereates and that this method extends the existing results for this type of nonlinear optimization with smooth ,or piecewis somooth,or convex objective functions or their composition It is pyoved that this algorithm is globally convergent under certain conditions.Finally,some numerical results for several optimization problems are reported which show that the nonmonotonic trust region method is competitive with the usual trust region method.  相似文献   

8.
A new trust region method with adaptive radius   总被引:2,自引:0,他引:2  
In this paper we develop a new trust region method with adaptive radius for unconstrained optimization problems. The new method can adjust the trust region radius automatically at each iteration and possibly reduces the number of solving subproblems. We investigate the global convergence and convergence rate of this new method under some mild conditions. Theoretical analysis and numerical results show that the new adaptive trust region radius is available and reasonable and the resultant trust region method is efficient in solving practical optimization problems. The work was supported in part by NSF grant CNS-0521142, USA.  相似文献   

9.
In this paper we present a new memory gradient method with trust region for unconstrained optimization problems. The method combines line search method and trust region method to generate new iterative points at each iteration and therefore has both advantages of line search method and trust region method. It sufficiently uses the previous multi-step iterative information at each iteration and avoids the storage and computation of matrices associated with the Hessian of objective functions, so that it is suitable to solve large scale optimization problems. We also design an implementable version of this method and analyze its global convergence under weak conditions. This idea enables us to design some quick convergent, effective, and robust algorithms since it uses more information from previous iterative steps. Numerical experiments show that the new method is effective, stable and robust in practical computation, compared with other similar methods.  相似文献   

10.
A new trust region algorithm for image restoration   总被引:1,自引:0,他引:1  
The image restoration problems play an important role in remote sensing and astronomical image analysis. One common method for the recovery of a true image from corrupted or blurred image is the least squares error (LSE) method. But the LSE method is unstable in practical applications. A popular way to overcome instability is the Tikhonov regularization. However, difficulties will encounter when adjusting the so-called regularization parameter a. Moreover, how to truncate the iteration at appropriate steps is also challenging. In this paper we use the trust region method to deal with the image restoration problem, meanwhile, the trust region subproblem is solved by the truncated Lanczos method and the preconditioned truncated Lanczos method. We also develop a fast algorithm for evaluating the Kronecker matrix-vector product when the matrix is banded. The trust region method is very stable and robust, and it has the nice property of updating the trust region automatically. This releases us from tedious fi  相似文献   

11.
The trust region method is an effective approach for solving optimization problems due to its robustness and strong convergence. However, the subproblem in the trust region method is difficult or time-consuming to solve in practical computation, especially in large-scale problems. In this paper we consider a new class of trust region methods, specifically subspace trust region methods. The subproblem in these methods has an adequate initial trust region radius and can be solved in a simple subspace. It is easier to solve than the original subproblem because the dimension of the subproblem in the subspace is reduced substantially. We investigate the global convergence and convergence rate of these methods.  相似文献   

12.
In this paper, we propose a new trust region method for unconstrained optimization problems. The new trust region method can automatically adjust the trust region radius of related subproblems at each iteration and has strong global convergence under some mild conditions. We also analyze the global linear convergence, local superlinear and quadratic convergence rate of the new method. Numerical results show that the new trust region method is available and efficient in practical computation.  相似文献   

13.
The singular value decomposition is commonly used to solve linear discrete ill-posed problems of small to moderate size. This decomposition not only can be applied to determine an approximate solution but also provides insight into properties of the problem. However, large-scale problems generally are not solved with the aid of the singular value decomposition, because its computation is considered too expensive. This paper shows that a truncated singular value decomposition, made up of a few of the largest singular values and associated right and left singular vectors, of the matrix of a large-scale linear discrete ill-posed problems can be computed quite inexpensively by an implicitly restarted Golub–Kahan bidiagonalization method. Similarly, for large symmetric discrete ill-posed problems a truncated eigendecomposition can be computed inexpensively by an implicitly restarted symmetric Lanczos method.  相似文献   

14.
In this paper we present a trust region method of conic model for linearly constrained optimization problems.We discuss trust region approaches with conic model subproblems.Some equivalent variation properties and optimality conditions are given.A trust region algorithm based on conic model is constructed.Global convergence of the method is established.  相似文献   

15.
The iterative solution of large linear discrete ill-posed problems with an error contaminated data vector requires the use of specially designed methods in order to avoid severe error propagation. Range restricted minimal residual methods have been found to be well suited for the solution of many such problems. This paper discusses the structure of matrices that arise in a range restricted minimal residual method for the solution of large linear discrete ill-posed problems with a symmetric matrix. The exploitation of the structure results in a method that is competitive with respect to computer storage, number of iterations, and accuracy.  相似文献   

16.
In this paper, based on a simple model of trust region sub-problem, we combine the trust region method with the non-monotone and self-adaptive techniques to propose a new non-monotone self-adaptive trust region algorithm for unconstrained optimization. By use of the simple model, the new method needs less memory capacitance, computational complexity and CPU time. The convergence results of the method are proved under certain conditions. Numerical results show that the new method is effective and attractive for large-scale optimization problems.  相似文献   

17.
Truncated singular value decomposition is a popular solution method for linear discrete ill-posed problems. However, since the singular value decomposition of the matrix is independent of the right-hand side, there are linear discrete ill-posed problems for which this method fails to yield an accurate approximate solution. This paper describes a new approach to incorporating knowledge about properties of the desired solution into the solution process through an initial projection of the linear discrete ill-posed problem. The projected problem is solved by truncated singular value decomposition. Computed examples illustrate that suitably chosen projections can enhance the accuracy of the computed solution.  相似文献   

18.
本文提出了一种解无约束优化问题的新的非单调自适应信赖域方法.这种方法借助于目标函数的海赛矩阵的近似数量矩阵来确定信赖域半径.在通常的条件下,给出了新算法的全局收敛性以及局部超线性收敛的结果,数值试验验证了新的非单调方法的有效性.  相似文献   

19.
In this paper, based on a simple model of the trust region subproblem, we propose a new self-adaptive trust region method with a line search technique for solving unconstrained optimization problems. By use of the simple subproblem model, the new method needs less memory capacitance and computational complexity. And the trust region radius is adjusted with a new self-adaptive adjustment strategy which makes full use of the information at the current point. When the trial step results in an increase in the objective function, the method does not resolve the subproblem, but it performs a line search technique from the failed point. Convergence properties of the method are proved under certain conditions. Numerical experiments show that the new method is effective and attractive for large-scale optimization problems.  相似文献   

20.
结合有效集和多维滤子技术的拟Newton信赖域算法(英文)   总被引:1,自引:0,他引:1  
针对界约束优化问题,提出一个修正的多维滤子信赖域算法.将滤子技术引入到拟Newton信赖域方法,在每步迭代,Cauchy点用于预测有效集,此时试探步借助于求解一个较小规模的信赖域子问题获得.在一定条件下,本文所提出的修正算法对于凸约束优化问题全局收敛.数值试验验证了新算法的实际运行结果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号