首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We used dynamic light scattering (DLS), steady-state fluorescence, time resolved fluorescence quenching (TRFQ), tensiometry, conductimetry, and isothermal titration calorimetry (ITC) to investigate the self-assembly of the cationic surfactant cetyltrimethylammonium sulfate (CTAS) in aqueous solution, which has SO(2-)4 as divalent counterion. We obtained the critical micelle concentration (cmc), aggregation number (N(agg)), area per monomer (a0), hydrodynamic radius (R(H)), and degree of counterion dissociation (alpha) of CTAS micelles in the absence and presence of up to 1 M Na2SO4 and at temperatures of 25 and 40 degrees C. Between 0.01 and 0.3 M salt the hydrodynamic radius of CTAS micelle R(H) approximately 16 A is roughly independent on Na2SO4 concentration; below and above this concentration range R(H) increases steeply with the salt concentration, indicating micelle structure transition, from spherical to rod-like structures. R(H) increases only slightly as temperature increases from 25 to 40 degrees C, and the cmc decreases initially very steeply with Na2SO4 concentration up to about 10 mM, and thereafter it is constant. The area per surfactant at the water/air interface, a0, initially increases steeply with Na2SO4 concentration, and then decreases above ca. 10 mM. Conductimetry gives alpha = 0.18 for the degree of counterion dissociation, and N(agg) obtained by fluorescence methods increases with surfactant concentration but it is roughly independent of up to 80 mM salt. The ITC data yield cmc of 0.22 mM in water, and the calculated enthalpy change of micelle formation, Delta H(mic) = 3.8 kJ mol(-1), Gibbs free energy of micellization of surfactant molecules, Delta G(mic) = -38.0 kJ mol(-1) and entropy TDelta S(mic) = 41.7 kJ mol(-1) indicate that the formation of CTAS micelles is entropy-driven.  相似文献   

2.
3.
The aggregation properties of three dicationic quaternary ammonium gemini surfactants with the same structure, except the spacer group, diethyl ether, six methylene, and p-xylyl, have been studied using electrical conductivity and fluorescence. The critical micelle concentration (cmc) and the micelle aggregation number (N) were determined, and the micropolarity and the microviscosity of the micelle were characterized. The micelle ionization degree (alpha) was obtained by a combination of the electrical conductivity data and the micelle aggregation number. Furthermore, the Gibbs free energy of micellization (deltaGmic) was studied. These results have shown that the nature of the spacer has an important effect on the aggregation properties of gemini surfactants in an aqueous solution. A hydrophilic, flexible spacer prompts micelle formation, which leads to a smaller cmc, smaller alpha, larger N, and more negative deltaGmic. Meanwhile, the microviscosity study indicates that the gemini surfactant with a hydrophilic, flexible spacer forms a more closely packed micelle structure than the one with a hydrophobic, rigid spacer.  相似文献   

4.
The aggregation behavior of cationic gemini surfactants with respect to variation in head group polarity and spacer length is studied through conductance, surface tension, viscosity, and small-angle neutron-scattering (SANS) measurements. The critical micellar concentration (cmc), average degree of micelle ionization (beta(ave)), minimum area per molecule of surfactant at the air-water interface (A(min)), surface excess concentration (gamma(max)), and Gibb's free energy of micellization (delta G(mic)) of the surfactants were determined from conductance and surface tension data. The aggregation numbers (N), dimensions of micelles (b/a), effective fractional charge per monomer (alpha), and hydration of micelles (h(E)) were determined from SANS and viscosity data, respectively. The increasing head group polarity of gemini surfactant with spacer chain length of 4 methylene units promotes micellar growth, leading to a decrease in cmc, beta(ave), and delta G(mic) and an increase in N and b/a. This is well supported by the observed increase in hydration (h(E)) of micelles with increase in aggregation number (N) and dimension (b/a) of micelle.  相似文献   

5.
Two samples of Triton X-100 (TX100) were compared. The "old sample," manufactured by Rohm and Haas, has a mean degree of ethoxylation of 10.1. The "new sample," manufactured by Union Carbide, has a mean degree of ethoxylation of 9.6. The cmc values near room temperature (23 degrees C, old sample; 24.6 degrees C, new sample), as determined from surface tension measurements, are similar. Dynamic light scattering measurements on the new sample gave hydrodynamic radii at different temperatures in reasonable accord with those reported a number of years ago. In contrast, time-resolved fluorescence quenching (TRFQ) experiments using a pyrene-labeled triglyceride as a probe gave aggregation numbers N(agg) near room temperature that were similar to those determined previously by light scattering; however, the N(agg) of the new sample was larger, and the difference was outside of experimental error to one standard deviation. More troubling was that the TRFQ experiment failed to give meaningful results on solutions exposed to air, as in the case of the older TX100 sample. To get useful data by TRFQ measurements, one had to first remove oxygen from the solution. Copyright 2000 Academic Press.  相似文献   

6.
The aqueous mixed system decyltrimethylammonium bromide (C(10)TAB)-hexadecyltrimethylammonium bromide (C(16)TAB) was studied by conductivity, ion-selective electrodes, surface tension, and fluorescence spectroscopy techniques. The mixture critical micelle concentration, cmc(*), aggregation number, N( *), and micelle molar conductivity, Lambda(M)(cmc), showed that the system aggregation is strongly nonideal. Both cmc(*) and N( *) results were analyzed with two different procedures: (i) the regular solution theory on mixed micelles or Rubingh's theory, and (ii) by the determination of the partial critical micelle concentration of the amphiphile component i in the presence of a constant concentration of the other amphiphile component, cmc(i)( *). The Rubingh procedure gives micelles richer in C(16)TAB than the overall mixtures, while procedure (ii) gives micelles having the same composition as in the complete surfactant mixture (alpha(C(10)TAB). Mixed micelles are larger than pure surfactant ones, with nonspherical shape. Using a literature model, the cause of the synergistic effect seems to be a reduction of the hydrocarbon/water contact at the micelle surface when mixed micelles form. Conductivity and ion-selective electrodes indicate that highly ionized premicelles form immediately before the cmc(*). The air/solution interface is strongly nonideal and much richer in C(16)TAB than the composition in the bulk. When micelles form there is a strong desorption from the air/solution interface because micelles are energetically favored when compared with the monolayer.  相似文献   

7.
Room-temperature ionic liquids (ILs) exhibit a unique set of properties, leading to opportunities for numerous applications. To obtain a better understanding of IL interfaces at a molecular level, we combined charged surfactants with ILs and studied their interfacial behavior. The critical micelle concentration (cmc) of each surfactant-IL pair was determined from both solubility phase diagrams and isotherms. Because the cmc is equivalent to the solubility at the Krafft temperature, a connection between the solubility of the surfactant and the physical properties of the underlying ionic liquid was established. Interfacial energy was found to be the major factor affecting the surfactant aggregation process, although its magnitude depends strongly on the IL structure. The results here give insight into explaining the nature of self-assembly of surfactants at IL interfaces and the interaction between solutes and IL solvents.  相似文献   

8.
9.
研究了烷基苯磺酸盐Gemini表面活性剂Ia与非离子表面活性剂C10E6溶液混合胶团中分子间的相互作用. 通过表面张力法测定了Ia 和C10E6不同比例不同温度下的临界胶束浓度(cmc). 结果表明, 两种表面活性剂以任何比例复配的cmc比单一表面活性剂的cmc都低, 表现出良好的协同效应. 传统型非离子表面活性剂C10E6、Gemini表面活性剂Ia及混合物的cmc都随着温度升高而降低. 而且, 任何配比的混合胶团中两种表面活性剂分子间的相互作用参数β都是负值, 这说明两种表面活性剂在混合胶团中产生了相互吸引的作用. 混合表面活性剂体系的胶团聚集数比单一Ia的大, 但比单一C10E6的小. 向Gemini表面活性剂Ia胶束中加入非离子表面活性剂C10E6会使胶束的微观极性变小.  相似文献   

10.
Studies of the aggregation behavior of cyclic gemini surfactants   总被引:1,自引:0,他引:1  
The specific conductance, surface tension, mean aggregation number, and apparent molar volume properties of aqueous solutions of a novel series of N,N'-bis(cyclododecyldimethyl)-alpha,omega-alkanediammonium dibromide (c12-s-c12) surfactants, where s is the spacer chain length, are reported. Surfactants with s = 3, 4, and 6 have been prepared and characterized in terms of their Krafft temperature (T(Kr)), critical micelle concentration (cmc), surfactant head group area (a) at the air-water interface, mean aggregation number (N(agg)), and the volume change upon micelle formation (deltaV(phi,M)). The c12-3-c12 shows little evidence of aggregate formation, while the results obtained for the c12-4-c12 and c12-6-c12 homologues suggest the formation of small, poorly defined micellar aggregates in aqueous solution.  相似文献   

11.
A series of long and ultralong chain tetrabutylammonium alkyl carboxylate (TBACm, TBA = tetrabutylammonium ion; Cm = carboxylate ion C(m-1)H(2)(m-1)CO(2)(-) of total carbon number m) surfactants have been obtained by direct neutralization of the fatty acids with m = 12, 14, 18, 22, and 24 by tetrabutylammonium hydroxide. Time-resolved fluorescence quenching has been used to determine the micelle aggregation number (N) of the surfactants with m = 12, 14, and 18 in the temperature range 10-50 degrees C and of the surfactants with m = 22 and 24 in the temperature range 25-60 degrees C. In all instances the values of N were well below those that can be calculated for the maximum spherical micelle formed by surfactants with the same alkyl chain as the investigated surfactants on the basis of the oil drop model for the micelle core. The microstructure of selected solutions of TBAC22 was examined using transmission electron microscopy at cryogenic temperature and compared to the microstructure of solutions of TBA dodecyl and tetradecyl sulfates. These observations generally confirmed the findings of TRFQ. The self-association behavior of these anionic surfactants with TBA counterions is explained on the basis of the large size and the hydrophobicity of the tetrabutylammonium ions. The important differences in behavior that have been evidenced between tetrabutylammonium alkyl carboxylates and alkyl sulfates are discussed in terms of differences in distribution of the surfactant electrical charge on the headgroup and alkyl chain predicted by quantum chemical calculations (Langmuir 1999, 15, 7546).  相似文献   

12.
The micelle aggregation numbers (N(agg)) of several series of cationic oligomeric surfactants were determined by time-resolved fluorescence quenching (TRFQ) experiments, using advantageously 9,10-dimethylanthracene as fluorophore. The study comprises six dimeric ("gemini"), three trimeric, and two tetrameric surfactants, which are quaternary ammonium chlorides, with medium length spacer groups (C(3)-C(6)) separating the individual surfactant fragments. Two standard cationic surfactants served as references. The number of hydrophobic chains making up a micellar core is relatively low for the oligomeric surfactants, the spacer length playing an important role. For the dimers, the number decreases from 32 to 21 with increasing spacer length. These numbers decrease further with increasing degree of oligomerization down to values of about 15. As for many conventional ionic surfactants, the micelles of all oligomers studied grow only slightly with the concentration, and they remain in the regime of small micelles up to concentrations of at least 3 wt %.  相似文献   

13.
The sugar-based gemini surfactant with peptide bonds, N,N'-bisalkyl-N,N'-bis[2-(lactobionylamide)ethyl]hexanediamide (2C(n)peLac, in which n represents hydrocarbon chain lengths of 12 and 16), was synthesized by reacting adipoyl chloride with the corresponding monomeric surfactant N-alkyl-N'-lactobionylethylenediamine (C(n)peLac), which was obtained by reacting ethylenediamine with alkyl bromide and lactobionic acid. The adsorption and micellization properties of C(n)peLac and 2C(n)peLac were characterized by the measurement of their equilibrium and dynamic surface tension, steady-state fluorescence using pyrene as a probe, dynamic light scattering (DLS), and time-resolved fluorescence quenching (TRFQ), and their biodegradability was also investigated. The critical micelle concentration (cmc) decreases with an increase in the hydrocarbon chains from monomeric to gemini surfactants, whereas it increases with an increase in the chain length from 12 to 16 for both systems. The increases in both the hydrocarbon chain and the chain length of sugar-based surfactants reduce surface activities such as the ability to lower the surface tension, the occupied area per molecule, and the adsorption rate at the air/water interface. The sugar-based surfactants C(n)peLac and 2C(n)peLac exhibit unique aggregation behavior in aqueous solution. The DLS results indicate that the apparent hydrodynamic diameter of C(n)peLac micelles decreases sharply with increasing concentration, whereas that of 2C(n)peLac micelles decreases gradually. From the TRFQ measurement, it was observed that, as concentration increases, the aggregation numbers are almost constant for C(n)peLac, whereas they increase for 2C(n)peLac. These results imply that loosely packed micelles formed by sugar-based surfactants become tightly packed micelles as the concentration increases. Furthermore, it was found that 2C(n)peLac shows lower biodegradability than does C(n)peLac because it contains tertiary amines in the molecule.  相似文献   

14.
A family of two-headed surfactants, the disodium 4-alkyl-3-sulfonatosuccinates, has been prepared by reacting maleic anhydride with the appropriate chain-length alcohol and subsequent addition of sodium bisulfite to the corresponding monoester. The properties of the micelles formed by these compounds in aqueous solution (aggregation numbers, degrees of counterion binding, and the cmc values) have been investigated as a function of temperature and surfactant chain length using viscosity, density, and conductance measurements. The critical micelle concentrations (cmc's) and the aggregation numbers appear to indicate that, in agreement with the earlier literature on other two-headed surfactants systems, these amphiphiles have higher cmc and lower aggregation numbers when compared to single-headed surfactants of comparable chain length. In addition, viscosity B coefficients and the thermodynamic parameters of activation of viscous flow have been determined. These results are interpreted in terms of the structure-making or -breaking properties of the surfactant amphiphiles below the cmc region. Finally, the thermodynamic properties of micelle formation have been estimated from the dependence of the cmc on the absolute temperature according to the charged pseudo-phase separation model of micelle formation. All these results are discussed in terms of how the addition of the second charged surfactant headgroup alters the micellar and solution properties of two-headed surfactants vs. their single-headed counterparts.  相似文献   

15.
The effect of TbCl3 on the aggregation processes of the anionic surfactants sodium decyl sulfate (SDeS) and sodium dodecyl sulfate (SDS) has been investigated. Electrical conductivity data, combined with Tb(III) luminescence measurements suggest that the formation of micelles involving TbCl3 and SDS occurs at concentrations below the critical micelle concentration (cmc) of the pure surfactants; the formation of these mixed aggregates was also monitored by light scattering, which indicates that the addition of TbCl3 to surfactant concentration at values below the pure surfactant cmc results in a much greater light scattering than that found with pure sodium alkylsulfate surfactant micelles. This phenomenon is dependent upon the alkyl chain length of the surfactant. With Tb(III)/DS-, complexes are formed with a cation/anion binding ratio varying from 3 to 6, which depends upon the initial concentration of Tb(III). This suggests that the majority of the cation hydration water molecules can be exchanged by the anionic surfactant. When the carbon chain length decreases, interactions between surfactant and Tb(III) also decrease, alterations in conductivity and fluorescence data are not so significant and, consequently, no binding ratio can be detected even if existing. The surfactant micellization is dependent on the presence of electrolyte in solution with apparent cmc being lower than the corresponding cmc value of pure SDS.  相似文献   

16.
A thermodynamic analysis of hydrogen ion titration is presented for association colloids with particular emphasis on surfactant micelles. When a particular type of the micellar Gibbs-Duhem relation (MGD), alpha(M)dmu(I)+(1-alpha(M))dmu(N)=0 [alpha(M): the degree of ionization of micelles; mu(I),mu(N): chemical potentials of ionized and nonionized species], holds, the free energy change accompanying the ionization of the micelle G(ex) can be evaluated from the titration data in the same manner as for covalently bonded colloids such as linear polyions. In the case where the regular solution approximation is valid for mixed micelles, the titration curve should be a straight line with a slope yielding the interaction parameter, and G(ex) is given as a function of alpha(M)(2). For dodecyldimethylamine oxide micelles for which the MGD relation has been shown to hold, values of the calculated electrostatic free energy G(el) were close to but significantly greater than experimental G(ex) values when the former were calculated on the basis of the Poisson-Boltzmann equation for either a sphere or a plate with smeared charges in a salt solution of infinite volume. When the critical micelle concentration (cmc) data are combined with the hydrogen ion titration data, we obtain a criterion to judge whether the above MGD relation holds or not. When the MGD relation holds, the monomer concentration C(1) can be evaluated from the hydrogen ion titration. For most cases examined, the C(1)/C(1)(alpha(M)=0) from the titration agrees well with cmc/cmc(alpha(M)=0), suggesting cmc=C(1) above the cmc. For tetradecyldimethylamine oxide, the MGD relation does not hold in the range of low ionic strength and even at 0.1 M NaCl it has been found that C(1)/C(1)(alpha(M)=0)相似文献   

17.
A new group of gemini aldonamide-type surfactants-N,N'-bisalkyl-N,N'-bis[(3-gluconylamide)propyl]ethylenediamines, N,N'-bisdodecyl-N,N'-bis[(3-glucoheptonylamide)propyl]ethylenediamine, and N,N'-bisalkyl-N,N'-bis[(3-lactobionylamide)propyl]ethylenediamines, (alkyl: n-C(8)H(17), n-C(12)H(25)), were synthesized and characterized. The surface properties, such as surface excess concentration, Gamma(cmc), surface area demand per molecule, A(min), efficiency in surface tension reduction, pC(20), the effectiveness of surface tension reduction, gamma(cmc), critical micelle concentration, cmc, and a measure of the tendency of the surfactant to adsorb at the aqueous/air interface relative to its tendency to form micelles in the bulk surfactant solution, cmc/C(20), and standard free energy of micellization, DeltaG(mic)(0), have been obtained by means of surface tension measurements. The standard fluorescence shift technique using PRODAN as a probe provide confirmation of the cmc values by an alternative method. Additionally, the micellar properties for the concentration near above the cmc have been characterized by the aggregation number, N(agg). The presence of the dimeric segments with the aldonamide hydrophilic units in the surfactant molecule is found to be the source of their unusual physicochemical behavior. They are very efficient at adsorbing at the free surface and at forming micelles in water. Their critical micelle concentration values are remarkably low. They reveal remarkably low A(min) values in relation to conventional nonionic surfactants, which is unexpected from the molecular dimensions for the molecule but which is possible if one assumes some type of multilayer structure or a coherent interfacial film.  相似文献   

18.
The critical reverse micelle concentrations of C(12)-s-C(12).2Br (s=2,3,4,5,6,8,12) in n-heptane/n-hexanol solutions, cmc(I)s, have been determined by absorption spectrum method using iodine as probe. The values of cmc(I)s are smaller than those of the critical micelle concentrations (cmc(aq)s) in aqueous solution and reach a maximum at s=4, which is similar to the variation of cmc(aq) with s. The variation of cmc(I) with s is attributed to the alteration in the spacer chain conformation, i.e. when the spacer is short enough, it may adopt stretch configuration and when the spacer is long, it tends to bend towards the continuous oil phase to achieve a more densely packing of the quaternary ammonium heads on the surface of the core.  相似文献   

19.
In this work we studied and compared the physicochemical properties of perfluorinated (sodium perfluoroheptanoate, C7FONa, and perfluorooctanoate, C8FONa) and hydrogenated (sodium octanoate, C8HONa, decanoate, C10HONa, and dodecanoate, C12HONa) amphiphiles. First, we determined their Krafft points to study the solubility and appropriate temperature range of micellization of these compounds. The critical micelle concentration (cmc) and ionization degree of micellization (beta) as a function of temperature (T) were estimated from conductivity data. Plots of cmc vs T appear to follow the typical U-shaped curve with a minimum T(min). The results show that the surfactants with CF2/CH2 ratio of 1.5 between alkyl chains (C12HONa-C8FONa and C10HONa-C7FONa) have nearly the same minimum value for cmc against temperature. The comparison between the cmc of hydrogenated amphiphiles and the corresponding perfluorinated amphiphiles must be done at this point. Thermodynamic functions of micellization were obtained by applying different theoretical models and choosing the one that best fit our experimental data. Although perfluorinated and hydrogenated amphiphiles present similar thermodynamic behavior, we have found a variation of 1.3 to 1.7 in the CF2/CH2 ratio, which did not remain constant with temperature. In the second part of this study the apparent molar volumes and adiabatic compressibilities were determined from density and ultrasound velocity measurements. Apparent molar volumes at infinite dilution presented the ratio 1.5 between alkyl chains again. However, apparent molar volumes upon micellization for sodium perfluoroheptanoate indicated a different aggregation pattern.  相似文献   

20.
A double-tailed polymerizable (pyrrolylalkyl) ammonium amphiphile has been synthesized, and its interfacial properties and aqueous phase behavior have been studied by polarized optical microscopy and X-ray diffraction. The Krafft temperature is about 27 degrees C, and the critical micelle concentration at 40 degrees C is about 1 mM, as obtained from surface tension measurements, potentiometry, and isothermal titration calorimetry. The lyotropic behavior of the surfactant is found to be of a complex nature. At concentrations higher than the micellar (L1) region, two mesophases have been identified: a second isotropic (L2) phase, which is probably micellar but not fully miscible with water, and a lamellar (L(alpha)) phase, showing interesting alignment properties. Small-angle X-ray scattering analysis of the mesophases has been evaluated in terms of a model of spherical micelles, which describes a mutual arrangement by a structure factor derived from a hard-sphere potential (Percus-Yevick, "PY", approach). Interest in the comprehensive phase behavior of the polymerizable surfactant is based on the desire to integrate the system into a composite material to obtain potentially conducting self-assembled hybrid mesostructures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号