首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The hydrophobic property is one of the most important requirements for the long-term use of silica aerogels for transparent or translucent window insulation and opaque thermal insulating systems. Therefore, the present paper deals with the synthesis and characterization of hydrophobic silica aerogels using trimethylethoxysilane (TMES) as a co-precursor. Silica sol was prepared by keeping the molar ratio of tetramethoxysilane (TMOS) precursor, methanol (MeOH) solvent, water (H2O) and ammonia (NH4OH) catalyst constant at 1:12:4:3.7 × 10–3 respectively throughout the experiments and the TMES/TMOS molar ratio (A) was varied from 0 to 2.35. The resulting silica alcogels were dried supercritically by high-temperature alcohol solvent extraction. Hydrophobicity of the aerogels was tested by measuring the percentage of water adsorbed by the aerogels after putting them directly on the surface of water under humid conditions. Alternately, the hydrophobicity was also tested by contact angle measurements. It was found that as the A value increased, the hydrophobicity of the aerogels increased but the optical transmission decreased from 93% to less than 5% in the visible range. The thermal stability of the aerogels was studied in the temperature range from 25 to 400°C. The hydrophobic nature of the aerogels was maintained up to a temperature of 300°C. The aerogels were characterized by infrared spectroscopy, optical transmittance, Scanning electron microscopy (SEM) and contact angle measurements. The results have been discussed by taking into account the hydrolysis and condensation mechanisms.  相似文献   

2.
The experimental results on the organic modification of tetraethoxysilane (TEOS) based silica aerogels synthesized by co-precursor and derivatization methods are reported and discussed. In order to obtain silica aerogels with better physicochemical properties in terms of higher hydrophobicity, optical transmission and thermal stability, eight organosilane compounds (hydrophobic reagents) of the type R n SiX4–n have been used. The molar ratio of tetraethoxysilane (TEOS), ethanol (EtOH), water (0.001 M oxalic acid catalyst) was kept constant at 1:5:7 respectively. The organically modified silica aerogels were produced by two different methods: (i) Co-precursor method and (ii) Derivatization method. In the former method, the molar ratio of hydrophobic reagent (HR) to TEOS was varied from 0.1 to 0.6. In the later method, derivatization of the wet gels was carried out using 20% hydrophobic reagent in methanol. The merits and demerits of both these methods have been presented. The organic surface modification of the aerogels was confirmed by the Fourier Transform Infrared (FTIR) spectroscopic studies and the contact angle measurements. In the co-precursor method, with the increase in hydrophobic reagent/TEOS molar ratio, the hydrophobicity increases ( = 136°) and the optical transmission decreases (5%), whereas in the derivatization method the optical transmission is very high (T 85%) but the hydrophobicity is low ( = 120°). The thermal stability of the hydrophobic aerogels (the temperature up to which the hydrophobicity is retained) was studied in the temperature range of 25–800°C. The aerogels based on the co-precursor method retained the hydrophobicity up to a temperature as high as 520°C and on the other hand, the derivatized aerogels are hydrophobic only up to a temperature of 285°C. For the first time, TEOS based hydrophobic silica aerogels have been obtained with negligible volume shrinkage using the trimethylethoxysilane (TMES) co-precursor. The aerogels were characterized by Fourier transform infrared spectroscopy (FTIR), optical transmittance, Scanning Electron Microscope (SEM), thermogravimetric (TG) and differential thermal (DT) analyses and the contact angle measurements.  相似文献   

3.
4.
Hydrophobic silica aerogels possesses potential applications as insulating materials for refrigerators, furnaces and thermos flasks. In such applications, aerogel materials may get exposed for longer time to atmosphere and the adsorbed water content from surroundings may deteriorate its properties. Therefore, hydrophobicity of the arogels becomes crucial parameter and needs to be evaluated critically. In the present works, silica alcogels were prepared using the mixture of tetramethoxysilane and methyltrimethoxysilane (MTMS) as precursor chemicals for silica. The concentration of MTMS, which is used as hydrophobic reagent, in the said mixture of silicon alkoxide was varied between 0 and 100% in steps of 25%. After gelation, the alcogels were dried supercritically by solvent extraction method. Resulted aerogels were exposed to relative humidity of 90% for a period of one month which were then characterized to assess hydrophobicity by the contact angle using water drop method and adsorbed water content measurements by Karl Fischer’s Titration method. Observed contact angle and water content measurements were compared and the results are reported in the present research paper.  相似文献   

5.
This work is devoted to the application of hydrophobic silica based aerogels and xerogels for the removal of three toxic organic compounds from aqueous solutions. These materials were tested and characterized regarding their morphology, particle size distribution, surface area and porous structure. The equilibrium tests were carried out at different adsorbate concentrations and the experimental data were correlated by means of Langmuir and Freundlich isotherms. The equilibrium data were well described by Langmuir and Freundlich in most cases. The maximum adsorption capacity by Langmuir model was observed for the adsorption of benzene onto aerogel (192.31 mg/g), though the most promising results were obtained for toluene adsorption due to the greater adsorption energy involved. Comparing these results with other reported results, the hydrophobic silica based aerogels/xerogels were found to exhibit a remarkable performance for the removal of benzene and toluene. In addition, the regeneration of previously saturated aerogel/toluene was also investigated by using an ozonation process. The adsorption/regeneration tests with ozone oxidation showed that the aerogel might be regenerated, nevertheless the materials lost their hydrophobicity and thus different methods should be evaluated in forthcoming investigations.  相似文献   

6.
Superhydrophobic surfaces have application in self-cleaning, anti-fouling and drag reduction. Most superhydrophobic surfaces are constructed using complex fabrication methods. An alternative method is to use sol–gel methods to make hydrophobic aerogel and xerogel surfaces. In this work, hydrophobic silica aerogels and xerogels were made from the silica precursors tetramethoxysilane (TMOS) and methyltrimethoxysilane (MTMS) in volume ratios MTMS/TMOS of 0–75 % using a base-catalyzed recipe. Overall hydrophobicity was assessed using contact angle measurements on surfaces prepared from crushed aerogel and xerogel powders. The surfaces made from aerogels were super-hydrophobic (with contact angles of 167°–170°) for all levels of MTMS (10–75 %). Of the xerogel-coated surfaces, those made with 50 % MTMS were hydrophobic and with 75 % MTMS were superhydrophobic. Chemical hydrophobicity was assessed using Fourier transform infrared spectroscopy, which showed evidence of Si–CH3 and Si–C bonds in the aerogels and xerogels made with MTMS. Morphological hydrophobicity was assessed using SEM imaging and gas adsorption. The drag characteristics of the aerogel- and xerogel-coated surfaces were measured using a rotational viscometer. Under laminar flow conditions all of the hydrophobic aerogel-coated surfaces (10–75 % MTMS) were capable of capturing an air bubble, thereby reducing the drag on a horizontal rotating surface by 20–30 %. Of the xerogel-coated surfaces, only the one made from 75 % MTMS could capture a bubble, which led to 27 % drag reduction. These results imply that morphological differences between silica aerogels and xerogels, rather than any differences in their chemical hydrophobicity, give rise to the observed differences in hydrophobicity and drag reduction for the sol–gel-coated surfaces.  相似文献   

7.
The successful incorporation of multiwalled carbon nanotubes (MWCNTs) into silica aerogels prepared by sol–gel method is reported herein. Pure silica aerogels prepared using sodium silicate precursor by ambient pressure drying are so fragile that they cannot be used easily. MWCNTs were used as reinforcements to improve the mechanical properties of silica aerogels. Results show that inserting small amounts of MWCNTs in the gels causes enhanced dimensional stability of silica aerogels. The silica aerogels were prepared by doping MWCNTs in silica matrix before gelation. The influence of MWCNTs on some microstructural aspects of silica matrix has been studied using nitrogen adsorption–desorption isotherms. From SEM study it is confirmed that the silica particles get capped on the surface of MWCNTs suggesting an enhanced toughness. Further, FTIR, Raman, EDAX, thermal conductivity and hydrophobicity studies of these doped aerogels were carried out. By addition of MWCNTs, silica aerogels were formed with 706 m2/g BET and 1,200 m2/g Langmuir surface areas and 149o contact angle. Low density (0.052 g/cc) and low thermal conductivity (0.067 W/m K) MWCNTs doped silica aerogels were obtained for the molar ratio of Na2SiO3::H2O::MWCNTs::citric acid::TMCS at 1::146.67::2.5 × 10−3::0.54::9.46 respectively with improved mechanical strength.  相似文献   

8.
The experimental results on the synthesis of flexible and superhydrophobic silica aerogels using methyltrimethoxysilane (MTMS) precursor by a two-step (acid-base) sol-gel process followed by the supercritical drying, are reported. The effects of various sol-gel parameters on the flexibility of the aerogels have been investigated. The aerogels of different densities were obtained by varying the molar ratio of MeOH/MTMS (S) from 14 to 35, with lower densities for larger S values. It has been observed that the Young's modulus (Y) decreased from 14.11 x 10(4) to 3.43 x 10(4) N/m(2) with the decrease in the density of the aerogels from 100 to 40 kg/m(3). Simultaneously, the aerogels are superhydrophobic with a contact angle as high as 164 degrees . The superhydrophobic aerogels are thermally stable up to a temperature of 530 K, above which they become hydrophilic. The aerogels have been characterized by bulk density, percentage volume shrinkage, and porosity measurements. The microstructures of the aerogels have been studied using the transmission electron microscopy (TEM). The Young's modulus of the aerogels has been determined by an uniaxial compression test. The variation of physical properties of the aerogels has been explained by taking into consideration the hydrolysis, condensation reactions, the resulting colloidal clusters and their network formation.  相似文献   

9.
Less fragile lightweight nanostructured polyurea based organic aerogels were prepared via a simple sol–gel processing and supercritical drying method. The uniform polyurea wet gels were first prepared at room temperature and atmospheric pressure by reacting different isocyanates with polyamines using a tertiary amine (triethylamine) catalyst. Gelation kinetics, uniformity of wet gel, and properties of aerogel products were significantly affected by both target density (i.e., solid content) and equivalent weight (EW) ratio of the isocyanate resin and polyamine hardener. A supercritical carbon dioxide (CO2) drying method was used to extract solvent from wet polyurea gels to afford nanoporous aerogels. The thermal conductivity values of polyurea based aerogel were measured at pressures from ambient to 0.075 torr and at temperatures from room temperature to −120 °C under a pressure of 8 torr. The polyurea based aerogel samples demonstrated high porosities, low thermal conductivity values, hydrophobicity properties, relatively high thermal decomposition temperature (~270 °C) and low degassing property and were less dusty than silica aerogels. We found that the low thermal conductivities of polyurea based aerogels were associated with their small pore sizes. These polyurea based aerogels are very promising candidates for cryogenic insulation applications and as a thermal insulation component of spacesuits.  相似文献   

10.
The experimental results of the studies on the absorption and desorption of organic liquids in elastic superhydrophobic silica aerogels, are reported. The elastic superhydrophobic aerogels were prepared using methyltrimethoxysilane (MTMS) precursor by a two-step sol-gel process followed by supercritical drying. Monolithic superhydrophobic silica aerogels were used as the absorbents. In all, four alkanes, three aromatic compounds, four alcohols and three oils were used. The absorption property of the aerogel was quantified by the mass and moles of the organic liquid absorbed by unit mass of the aerogel. The superhydrophobic aerogels showed a very high uptake capacity and high rate of uptake. The desorption of solvents and oils was studied by maintaining the as-absorbed aerogel samples at various temperatures and weighing them at regular time intervals until all the absorbed liquid got totally desorbed. This was verified by measuring the weights of the aerogel samples before and after desorption. The transmission electron micrograph observations showed that the aerogel structure was not much affected by the solvent absorption, while the oil absorption led to the shrinkage resulting in a dense structure after the desorption. In all the cases, the aerogels retained hydrophobicity and could be re-used as absorbents.  相似文献   

11.
This work focuses on the dependence preparation conditions—structure—physical properties of hydrophobic silica aerogels, all of them prepared under subcritical drying conditions (70 °C and 0.4 atm.), thus aiming at potential application as case insulation filling in heat pumps. The so prepared, millimeter scaled nano-porous hydrophobic silica aerogel granules were analyzed with standard electron microscope and atomic force microscopy, IR spectroscopy, UV/Vis spectroscopy, differential scanning calorimetry and thermal conductivity measurements. The physical properties of the aerogels were compared with commercial aerogel granules. A method for contact angle measurement of micro-droplets situated on the silica granules was proposed to quantify the level of their hydrophobicity.  相似文献   

12.
Adsorption properties of zeolites were investigated for the removal of p-cresol from aqueous solutions at 37 °C within the context of studying alternative methods to dialysis for removing uremic toxin from blood. MFI-framework type zeolites with different degrees of hydrophobicity and charge compensating cations were prepared: one pure silica MFI and four alumino-silicate MFIs (Si/Al = 30), with H+, Na+, K+ and Mg2+ as charge compensating cations. Adsorption isotherms and microcalorimetric measurements show a high affinity of p-cresol for all MFI type zeolites. The best capacity is obtained for the pure silica MFI, whereas the alumino-silicate samples show a higher affinity in the low concentration range. In the case of pure silica sample, the microscopic adsorption mechanism including the role of confined water is elucidated with the help of NMR, X-ray analysis (including Rietveld refinement) and Monte Carlo simulations. For all samples the high affinity is preserved in physiological serum solution, even in the presence of other toxin molecules such as urea. It is also shown that the compensating cation state of the samples is imposed by the physiological medium.  相似文献   

13.
The preparation of water repellent textiles by coating with different modified silica sols has been investigated. For this, pure and with 3-glycidoxypropyl triethoxysilane co-condensed silica sols were modified by three types of additives: alkyltrialkoxysilanes, polysiloxane derivatives and a fluorine containing silane. Hydrophobic properties of the coated fabrics of polyamide and of polyester mixed with cotton were determined using contact angle measurements. The hydrophobicity increases with increasing concentration of the alkylsilane additive in the silica sol and the length of the alkyl chain but with high additive concentrations plateau values in hydrophobicity were reached. Analogously textile coatings with high hydrophobicity were gained using hydrophobic polysiloxane or fluorine containing silicon compounds. The comparison of the different variants reveals that high wash-out stabilities were reached only by silica sols containing fluorine compoundsand hexadecylsilane additives. Therefore long-chain alkyltrialkoxysilane compounds could be used as substitutes for fluorine compounds for the surface modification of textiles in some practical applications.  相似文献   

14.
The experimental results on the preparation of low thermal conductivity and transparent ambient pressure dried silica aerogels with the sodium silicate solution, TMCS silylating agent with methanol, isopropyl alcohol, hexane and xylene solvents, are reported. This study is focussed on the effect of preparation conditions such as varying the number of preparation steps, pH of the hydrosol and hydrogel ageing temperature, for the production of the low thermal conductive silica aerogels and the results are analysed. Density, thermal conductivity, % of optical transmission and contact angle of the aerogels were measured. The Fourier Transform Infrared Spectroscopy (FTIR) studies revealed the presence of Si–C and C–H along with the Si–O–Si and OH bonds and their intensities strongly depend on the processing steps, pH of the hydrosol and gel ageing temperature. The UV–Visible spectra indicated the % of optical transmission of the aerogels decreased with increasing the number of processing steps, increase in the pH of the hydrosol from 3 to 8 and decreased for ageing temperature up to 50 °C. Further increase in temperature >50 °C, the % of optical transmission of the aerogels increased. The TGA-DTA data showed the thermal stability of the aerogels with respect to hydrophobicity is 325 °C. Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) analyses revealed the nanostructure of the aerogels. The porosity of the aerogels was studied using the pore size distribution. Silica aerogels with low density (0.051 g/cc), low thermal conductivity (0.049 W/m K), optical transmission (65%), high hydrophobicity (159°) and resistance to humid atmosphere >1 year was obtained in the present studies.  相似文献   

15.
Poly(N-isopropylacrylamide), a thermally responsive polymer, was end-grafted to mercaptopropyl derivatives of silica gel, plane glass sheets and glass capillary tubing by free radical polymerization of the monomer in 1,4-dioxane at 100 degrees C. The polymer monolayer attached to the glass carriers provided them with thermally controlled wettability registered by two independent methods: direct measurements of the water contact angle and capillary rise. The water contact angle changed from 54+/-3 degrees to 68+/-3 degrees in the temperature range from 20 to 50 degrees C. The polymer grafting to silica gel (pore diameter 100 A, particle size 5 microm) resulted in 15-30-fold reduction in protein adsorption on the carrier at 35 degrees C. Adsorption isotherms of myoglobin indicate completely different characters of the protein adsorption to silica gel and its polyNIPAM-grafted derivative. Cooling of the grafted carrier containing adsorbed myoglobin to 9 degrees C led to a partial release of the protein to the contacting solution, whereas heating of the system to 35 degrees C resulted in reversible binding of the protein. Adsorption of myoglobin on polyNIPAM-coated silica was ca. 2-fold higher at 35 than at 9 degrees C, most probably due to steric repulsion displayed by the swollen copolymer at the lower temperature.  相似文献   

16.
The synthesis of silica aerogels reinforced with either carbon or silica fibre felts and which encapsulate the lipase PS of Amano (LPS AB025407) obtained from Burkholderia cepacia is described. The materials were further shaped by moulding them in Teflon® tubes. The silica aerogels were synthesized with various ratios of hydrophobic groups and dried according to the supercritical CO2 method. Both types of reinforcements improve the catalytic activity of the material per mass of lipase. The fibre felts reinforcements also enable the encapsulation of higher concentrations of lipase. The materials were shaped into small moulded monoliths, which were readily washed and recycled without significant mechanical deterioration or loss of catalytic activity. In addition, hydrophobic carbon felts reinforce more efficiently silica aerogels that incorporate a high ratio of hydrophobic groups, while silica felts strengthen those aerogels that carry a low proportion of hydrophobic groups.  相似文献   

17.
A facile one-step polymer-incorporation sol-gel process, together with a surface modification and an ambient pressure drying processes, was developed to prepare silica-poly(vinylpyrrolidone) composite aerogels. These composite aerogels are with high hydrophobicity (static contact angle >120 degrees), good mechanical strength (Young's modulus of bending >30 MPa), and low high-temperature thermal conductivity (0.063 W/m-K at 300 degrees C), which are critical characteristics for practical applications of aerogels, particularly in energy saving areas, for long-term usage and large scale production.  相似文献   

18.
Carbon-aerogel-supported ruthenium nanoparticles were synthesized by impregnating carbon aerogels with Ru(acac)3 or Ru(cod)(tmhd)2 from supercritical carbon dioxide (scCO2) solutions, followed by thermal reduction of these precursors. Two different carbon aerogels with pore diameters of 4 and 21 nm were synthesized. The kinetics and the thermodynamics of impregnation of carbon aerogels with the ruthenium coordination complexes were studied. The approach-to-equilibrium data indicated very fast adsorption, and the adsorption isotherms were found to follow the Langmuir model. The impregnated carbon aerogel complexes were reduced thermally at different temperatures between 300 and 1000 degrees C in the presence of nitrogen. The resulting nanocomposites were characterized using transmission electron microscopy (TEM) and hydrogen chemisorption. TEM micrographs showed that the ruthenium nanoparticles were dispersed homogeneously throughout the porous carbon aerogel matrix, and the average sizes obtained under different conditions ranged from 1.7 to 3.8 nm. Once complete decomposition of the precursor had been achieved, the mean size of the ruthenium particles increased with increasing reduction temperature.  相似文献   

19.
We present a microstructural model of aerogels that includes the effect of particle necks, tortuosity and dangling ends on the scaling of elastic moduli with density. Relative neck radii can be determined for sintering series of silica aerogels and for Resorcinol Formaldehyde (RF) aerogels produced with different catalyst concentrations. The density of elastically ineffective dangling ends and the tortuosity can be estimated using information from thermal conductivity and elastic modulus measurements in silica aerogels. Typical values for the load bearing mass range from >50% for high density and heat treated aerogels to <10% of the total mass for low density wet-gels.  相似文献   

20.
We have prepared carbon aerogels (CAs) doped with cobalt or nickel through sol-gel polymerization of formaldehyde with the potassium salt of 2,4-dihydroxybenzoic acid, followed by ion exchange with M(NO3)2 (where M = Co2+ or Ni2+), supercritical drying with liquid CO2, and carbonization at temperatures between 400 and 1050 degrees C under a N2 atmosphere. The nanostructures of these metal-doped carbon aerogels were characterized by elemental analysis, nitrogen adsorption, high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD). Metallic nickel and cobalt nanoparticles are generated during the carbonization process at about 400 and 450 degrees C, respectively, forming nanoparticles that are approximately 4 nm in diameter. The sizes and size dispersion of the metal particles increase with increasing carbonization temperatures for both materials. The carbon frameworks of the Ni- and Co-doped aerogels carbonized below 600 degrees C mainly consist of interconnected carbon particles with a size of 15-30 nm. When the samples are pyrolyzed at 1050 degrees C, the growth of graphitic nanoribbons with different curvatures is observed in the Ni- and Co-doped carbon aerogel materials. The distance of graphite layers in the nanoribbons is approximately 0.38 nm. These metal-doped CAs retain the overall open cell structure of metal-free CAs, exhibiting high surface areas and pore diameters in the micro- and mesoporic region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号