首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 254 毫秒
1.
《European Polymer Journal》1987,23(7):541-546
The system poly(vinyl chloride) (PVC)/polyepichlorohydrin (PECH) has been studied. From a study of the sorption of acetone vapour by PVC, PECH and their mixtures, the Gibbs free energy of mixing of the two polymers has been calculated. The values of ΔGM are positive indicating lack of miscibility. Thermodynamic aspects of the PVC/PECH system are discussed.  相似文献   

2.
《Thermochimica Acta》1987,114(1):139-144
The interaction of nitrogen and water vapour with surfaces of goethite have been studied using volumetric adsorption technique. BET areas for nitrogen and water are 72 m2 g−1 and 45 m2 g−1, respectively. Hysteresis behaviour differs markedly. Analysis of the isosteric heat of adsorption shows that nitrogen is physisorbed while water initially reacts with reactive (dehydroxylated) sites.  相似文献   

3.
Uranyl ion-imprinted polymers (U(VI)-IIPs) were successfully prepared by combining phytic acid as the functional monomer, uranyl ion (UO22+) as the template, and tetraethyl silicate (TEOS) as the cross-linker with the marine facultative fungus Fusarium sp. #ZZF51 addicted to U (VI) mycelium through the ion-imprinted sol–gel method. Single-factor experiments were performed to optimize the preparation conditions and the prepared materials were better characterized with FTIR, SEM and BET meter. The optimum adsorption conditions were explored by single-factor experiments and BBD response surface method in detail. The adsorption–desorption recycling and adsorption selectivity experiments revealed that U(VI)-IIPs had a good stability and selectivity. The U (VI) adsorption process of U(VI)-IIPs was better described by the pseudo-second order kinetic equation and Langmuir isotherm model.  相似文献   

4.
The organic–inorganic composite materials based on mesoporous silica were synthesized using sol–gel method. The surface area of silicas was modified by bovine serum albumin (BSA) and guanidine polymers: polyacrylate guanidine (PAG) and polymethacrylate guanidine. The mesoporous silicas were characterized by nitrogen adsorption–desorption analysis, Fourier transform infrared spectroscopy, transmission electron microscopy. The obtained materials were used as adsorbents for selective bilirubin removal. It was shown that the structural properties and surface area of modified materials depend on the nature of polymers. Incorporation of polymers in silica gel matrix during sol–gel process leads to the formation of mesoporous structure with high pore diameter and a BET surface area equals to 346 m2/g for SiO2/BSA and 160 m2/g for SiO2/PAG. Analysis of adsorption isotherms showed that modification of silica by BSA and guanidine polymers increases its adsorption ability to bilirubin molecules. According to Langmuir model, the maximum bilirubin adsorption capacity was 1.18 mg/g.  相似文献   

5.
Metal-doped porous organic polymers often display unique properties for applications in gas uptake owing to the incorporation of the metal elements in the polymer networks. In this study, a series of novel ferrocene-based hypercrosslinked polymers were prepared by phenolic polycondensation (Fc-PR-HCPs). To generate the hypercrosslinked polymers, 1,1′-ferrocenedicarboxaldehyde (Fc(CHO)2) and bisphenol A (BPA) were used as the building blocks. The maximum value of BET and micropore surface area is determined to be 1111.4 and 487.4 m2/g for Fc-PR-HCP3. A significant H2 adsorption capacity of 3.11 wt% was achieved for Fc-PR-HCP3 at 77 K/1.0 bar, which was noted to be higher than the porous organic polymers with even higher BET surface area value. The high micropore surface area value and the adsorption sites (aromatic rings and metal ion-active sites) provided by two building blocks were used to explain the significant H2 adsorption capacity successfully. Overall, the findings from this study indicate that Fc-PR-HCPs highlighted prospective applications in the field of H2 capture.  相似文献   

6.
The influence of matrix extensibility on the properties of a composite was studied using two glassy polymers of almost identical chemical structure but differing crosslink densities. The lower crosslink density gave a 73 % increase in tensile elongation at break and a 56% increase in specific fracture energy. Unidirectional laminates of glass, carbon, and Kevlar® fibres were prepared with these two polymers and tested for shear strength, transverse tension, and dynamic fatigue.The shear strengths of the polymers were found to be almost independent of crosslink densities (about 100 MPa). The interlaminar shear strengths of the carbon fibre laminates corresponded to those of the matrix polymers (Kevlar® fibre laminates failed at 60 %). In accordance with Griffith's equation the more extensible polymer and its laminates performed better in tensile tests transverse to the fibres due to improved fracture energy. Failure criteria based on strain magnification were useful in the case of glass fibre laminates, but proved inadequate for laminates based on anisotropic fibres such as carbon and Kevlar®.The dynamic fatigue strengths of the two matrix polymers were unaffected by the difference in crosslink densities. Almost the same fatigue strengths were obtained for the matrix polymers as for the laminates (carbon, glass) transverse to the fibres. A lack of processability of the polymer with high functionality was identified as a source of deteriorating effects.  相似文献   

7.
Poly(methyl methacrylate) (PMMA), poly(vinyl chloride) (PVC), Nylon 6, and Nylon 6,6 have been electrospun successfully. The nanofibers have been characterized by scanning electron microscopy (SEM), confirming the presence of bead free and fiber‐bead free morphologies. Thermogravimetric analysis (TGA) indicated differences between the thermal stability of PMMA nanofibers and PMMA powder. However, no significant differences were observed between the starting physical form (powder or pellet) of PVC, Nylon 6 and Nylon 6,6, and their corresponding electrospun nanofibers. Differential scanning calorimetry (DSC) demonstrated a lower glass transition temperature (Tg) and water absorption for PMMA electrospun nanofibers. Furthermore, electrospun Nylon 6 and Nylon 6,6 had a slight decrease in crystallinity. Tensile testing was performed on the electrospun nanofibers to obtain the Young modulus, peak stress, strain at break, and energy to break, revealing that the non‐woven mats obtained had modest mechanical properties that need to be enhanced. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
In this study the nitrogen adsorption isotherms of heat-treated zinc oxalate, sintered magnesium oxide, and some oxidised pitch resins are considered. It is shown that characterisation of the adsorption isotherm can be via the monolayer capacity, the BET constant C, or plots of the degree of coverage of the surface at various relative vapour pressures. These parameters are critically assessed and shown to be dependent upon the closeness to the manner in which the complete adsorption isotherm is described by the BET equation. In considering the complete adsorption isotherm it is considered best to characterise the adsorption data by quoting the statistical monolayer capacity and the value of C at this point on the adsorption isotherm. The adsorption isotherms are then best compared by plotting as the number of statistical layers against the relative pressure. The further characterisation by plotting the apparent variation in C or the degree of coverage of the surface against the relative pressure has a usefulness if the limitations of the method are noted.  相似文献   

9.
Hydroxypropyl methylcellulose (HPMC) and polyvinyl alcohol (PVA) are important polymers in pharmaceutical, food and other industries being largely used as encapsulation agents. The characterization of two reference grades of HPMC (Pharmacoat? 603 and Pharmacoat? 615) and one reference grade of PVA (Mowiol? 4-98), through X-ray diffraction (XRD) and thermogravimetry (TG) is described. Specific analyses were performed by means of dynamic vapour sorption analysis of water adsorption/desorption from vapours at 10, 25, 40, 55 and 70?°C. Guggenheim?CAnderson?Cde Boer (GAB), Brunauer?CEmmett?CTeller (BET), Park and n-layer BET models were successfully used to fit the experimental data. The glass transition temperature as function of water content was measured by means of differential scanning calorimetry (DSC). The experimental data were analysed according to Linear, Gordon?CTaylor, Fox and Roos equations. XRD studies revealed amorphous structure for the Pharmacoat??603 and Pharmacoat??615 and crystalline for Mowiol??4-98. Single and multi-step temperature degradation point was found for Pharmacoat??603 and Pharmacoat??615 and Mowiol??4-98, respectively. The water uptake is higher for Pharmacoat??603 and Pharmacoat??615 than Mowiol??4-98. The influence of temperature on water uptake is opposite for the two types of polymers. GAB and n-layer BET were found to better model Pharmacoat??603 and Pharmacoat??615 and Mowiol??4-98 data, respectively. The water makes the glass transition to decrease quite drastically. Gordon?CTaylor is better fitting the experimental data both for Pharmacoat??603 and Pharmacoat??615 and Mowiol??4-98.  相似文献   

10.
Composite waste composed of carbon fibres and polybenzoxazines resin has been pyrolysed in a fixed bed reactor at temperatures of 350, 400, 450, 500 and 700 °C. Solid residues of between 70 and 83.6 wt%, liquid yields 14 and 24.6 wt% and gas yields 0.7 and 3.8 wt% were obtained depending on pyrolysis temperature. The derived pyrolysis liquids contained aniline in high concentration together with oxygenated and nitrogenated aromatic compounds. The pyrolysis gases consisted mainly of CO2, CO, CH4, H2 and other hydrocarbons. The carbon fibres used in the composite waste were separated from the char of the solid residue via oxidation of the char at two different temperatures and investigated for their mechanical strength properties. The carbon fibres recovered from the sample pyrolysed at 500 °C and oxidised at 500 °C exhibited mechanical properties which were 90% of that of the original virgin carbon fibres. Steam activation of the recovered carbon fibres was carried out at 850 °C at different times of activation. The effect of activation time on BET surface area, activated carbon fibres yield, porosity and the morphological structure of activated carbon fibres was evaluated. A maximum BET surface area of over 800 m2 g−1 was obtained for the activated carbon fibres produced at 850 °C for 5 h of activation. Nitrogen adsorption-desorption isotherms showed that the adsorption capacity increased as the activation time increased up to 5 h of activation and then after that decreased.  相似文献   

11.

In this work, the effect of temperature on the texture of silica gel waste is presented and water vapour adsorption in a different humidity is highlighted. It was found that silica gel waste is a mesoporous material with the parallel plates pores. Its specific surface area is equal to 4.61 m2 g?1, and the calculated total pore volume is equal to 9.01 × 10?3 cm3 g?1. The texture of silica gel waste changed during calcination in a 188–550 °C temperature interval: SBET and ΣVP increased to 11.32 m2 g?1 and 30.06 × 10?3 cm3 g?1, respectively. It was determined that the water vapour pressure influenced the mineralogical composition and the quantity of adsorbed water in the samples. The obtained results were confirmed by the differential scanning microcalorimetry, X-ray diffraction, BET and water vapour adsorption analysis data.

  相似文献   

12.
Organic microporous materials based on spiroketal and spirothioketal polymers were synthesized through 1,3-dioxol-forming polymerization reaction between pentaerythritol or pentaerythritol tetrathiol and different types of cyclohexa-1,4-dione derivatives. The structure of the prepared polymers was confirmed by NMR spectroscopy and molecular mass measurements. Nitrogen adsorption/desorption isotherms of the prepared polymers show a large amount of nitrogen adsorbed at low relative pressure indicating microporosity. These polymers have Brunauer Emmitt and Teller (BET) surface areas in the range from 492 (m2 g−1) to 685 (m2 g−1). The prepared polymers were found to be useful for pervaporation separation of methanol-toluene mixture with a separation factor up to 12.5 and fluxes, varying between 6.7 × 10−3 kg/(m2 h) and 13.4 × 10−3 kg/(m2 h).  相似文献   

13.
Abstract

In this paper, a selective nickel ions chelating adsorbents (Ni-CMCS) were prepared based on carboxymethyl chitosan by ion imprinting technique. Scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) were used to investigate their physicochemical properties. Brunauer-Emmett-Teller (BET) analysis showed that the BET surface area of Ni-CMCS had a significant increase after ion imprinting process. The effects of pH value, contact time and initial concentration of Ni(II) were studied. The adsorption kinetics were investigated, which indicated that Ni-CMCS was better fitted with pseudo-second-order kinetic model (R2 = 0.9991) with film diffusion process as rate controlling step. The adsorption isotherms study indicated that Langmuir model matched better with the experimental data for Ni-CMCS (R2 = 0.9617). Besides, the maximum adsorption capacity calculated from the Langmuir equation was 82.78?mg g?1. Moreover, the selectivity experiment suggested that Ni-CMCS had good selectivity in the presence of Co(II), Mn(II), or Cd(II). After used four cycles, Ni-CMCS kept great adsorption capacity.  相似文献   

14.
A series of N, O‐doped hypercrosslinked microporous polymers (HCPs) with high surface area and rich microporosity were constructed via facile Friedel‐Crafts alkylation promoted by anhydrous ferric chloride (FeCl3), which used benzyl alcohol (BA) and 2‐phenylimidazole (PID) as the basic building blocks. The effects of structural composition on the pore properties and gas adsorption properties of prepared HCPs were systematically investigated. The results show that by adjusting the ratio of PID to BA, the Brunauer–Emmett–Teller (BET) specific surface area and pore volume of the prepared HCPs can be controlled, and the BET specific surface area of the polymers range from 732–992 m2/g. Gas uptake experiments indicate that the obtained HCPs exhibit very high CO2 adsorption capacity up to 3.55 mmol/g at 273 K/1.0 bar. Simultaneously, these N, O‐doped HCPs also show quite high isosteric heat of CO2 sorption at the low coverage (up to 33 kJ/mol). In addition, the prepared HCPs have excellent selective adsorption performance, and the optimal selective adsorption of CO2/N2 is 62. These results demonstrate that these prepared HCPs are potential candidates for applications in CO2 capture.  相似文献   

15.
In this work subtleties of application of BET isotherm for liquid phase adsorption is presented. It has been shown that direct use of the classical BET equation (which was developed for gas phase adsorption) to liquid phase adsorption leads to ambiguous and erroneous results. Some cases of misuse of BET equation for liquid phase adsorption have been revisited. By close examination of the development of the classical equation, the causes of misunderstandings were elucidated and the suitable form of the BET equation for liquid phase adsorption was developed. As case studies, the classical form of the BET equation along with the correct form of the equation for liquid phase have been applied for modeling liquid phase adsorption of methyl tert-butyl ether (MTBE) on perfluorooctyl alumina, phenol on activated carbon and pentachlorophenol on carbonized bark. It has been shown that direct application of the classical BET isotherm to liquid phase adsorption results in poor and erroneous estimation of the equation parameters. For example, in aqueous phase adsorption of MTBE on perfluorooctyl alumina, the monolayer adsorption capacity of the adsorbent was calculated as 9.7 mg/g instead of 3.3 mg/g or the saturation concentration of MTBE in water was calculated as 1212 mg/L instead of 42000 mg/L.  相似文献   

16.
为了选择合适的吸附剂来脱除盐酸溶液中的氯仿,本文测定了几种聚合物吸附剂在298.15 K温度下对水溶液和20%盐酸溶液中氯仿的吸附等温线,考察了其吸附能力,并将其吸附能力与活性炭和固体石蜡进行了比较。所研究的吸附剂包括粉末状氯化橡胶,聚丙烯,氯化聚丙烯,聚氯乙烯,活性炭和固体石蜡。结果表明,这些吸附剂的吸附行为服从Langmuir 方程,其吸附能力的次序为活性炭>聚氯乙烯>氯化橡胶>聚丙烯 >氯化聚丙烯 >固体石蜡。该次序基本上与从聚氯乙烯到固体石蜡吸附剂中氯含量逐渐降低的次序相一致。聚氯乙烯与氯化橡胶的吸附能力与活性炭相当,其饱和吸附量大约为1.4g-CHCl3/g-吸附剂。所有吸附剂对氯仿的吸附能力均随着溶液中盐酸浓度的增加而降低。结果表明,工业级的粉状聚氯乙烯或氯化橡胶可以作为一种有效的吸附剂脱除水溶液中的氯仿,且具有成本低,吸附性好和易于通过热再生循环利用的特点。  相似文献   

17.
In this study, we report the synthesis of π‐conjugated network polymers including unique fluorescent units via palladium‐catalyzed direct (C? H) arylation polycondensation of 1,2,4,5‐tetrafluorobenzene with tetrabromoarenes. The obtained polymers, including tetraphenylethene (TPE) or pyrene (PYR) units, had microporous structures with the specific Brunauer–Emmett–Teller (BET) surface areas at 508 and 824 m2 g?1, respectively. These polymers possessed narrow pore distributions (<15 nm). These analyses supported that π‐conjugated microporous polymers (CMPs) were synthesized by the direct arylation. Similar to the result of BET surface areas, carbon capture capacity of CMP based on PYR unit was higher than that of CMP based on TPE unit. Because the nitrogen capture capacity of these CMPs was low (≈ 0), selectivity of carbon dioxide adsorption was very high. TPE is a typical aggregation‐induced emission unit but PYR is an aggregation‐caused quenching (ACQ) molecule. The incorporation of TPE unit into the microporous polymer gave green‐colored fluorescence (Φ = 0.12). The polymer including PYR units also showed the green‐colored fluorescence (Φ = 0.05) even though the ACQ property. These synthesized CMPs exhibited characteristic solvatofluorochromism. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 3862–3867  相似文献   

18.
Thermoplastic polycarbonate (PC) and nylon 6 (NY) composites with cenosphere and hollow glass beads were prepared and their mechanical, rheological, thermal and flame retardency properties were studied. The flexural behavior of the composites increased after loading with cenosphere and hollow glass beads. The tensile strength of the PC composites was enhanced up to 80 N mm–2 as compared to pure PC while no remarkable change was observed in case of nylon 6 composites. Study of thermogravimetric Analysis (TGA) showed that the thermal stability of all the composites (Polycarbonate/cenosphere, Polycarbonate/hollow glass beads, Nylon 6/cenosphere and Nylon 6/hollow glass beads) increased. It was concluded that both the fillers enhanced the non-flammability of the polymers. Limiting oxygen index (LOI) value of all the composites showed an increase with increase in the concentration of filler. The optimal results of LOI and UL 94 were observed in composites with 8% cenosphere and 12 % cenosphere in case of Nylon 6. Cenosphere led to superior mechanical properties of polycarbonate and nylon 6 in comparison to hollow glass beads which suggested the composites can find use in automotive, industrial, pump component and for manufacturing of light weight parts in aeronautic industry at lower economic value.  相似文献   

19.
Our study using the nonlocal density functional theory (NDFT) showed that active coals might have a bidisperse microporous structure. The binomial equation of the theory of volume filling of micropores (TVFM) approximates well the nitrogen adsorption isotherms at relative pressures from 1 × 10−4 to 0.2. The dominant micropore sizes calculated in terms of the characteristic adsorption energy lie in the region of the maximum of the size distribution of micropores calculated by the NDFT method. The tentative micropore sizes can be determined from the modified second term of the TVFM equation. The Henry and BET equations describe very limited regions of the nitrogen adsorption isotherm on microporous active coals.  相似文献   

20.
The heat, equilibrium, and kinetics of adsorption of 1-ethoxy-2-propanol vapours on granulated activated carbon were determined simultaneously by a reaction calorimeter SETARAM C80 D at T=298.15 K at various relative vapour pressures (0.1< p/ps<0.8). The adsorption isotherm was correlated by the Freundlich equation. It was observed that the enthalpies of adsorption decrease slightly with increasing of the relative vapour pressure of the adsorptive. The rate of adsorption were calculated from analysis of the heat flux signals and it was found that the mass-transfer coefficient for 1-ethoxy-2-propanol vapours in granulated activated carbon increased with increasing relative vapour pressure of the adsorptive.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号