首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Partial least squares (PLS) has been used in multivariate analysis of functional magnetic resonance imaging (fMRI) data as a way of incorporating information about the underlying experimental paradigm. In comparison, principal component analysis (PCA) extracts structure merely by summarizing variance and with no assurance that individual component structures are directly interpretable or that they represent salient and useful features. Oriented partial least squares (OrPLS) is a new PLS-like analysis paradigm in which extracted components can be oriented away from undesirable noise or confounds in the data and toward a desired targeted structure reflecting the fMRI experiment.  相似文献   

3.
Principal component analysis (PCA) is one of several structure-seeking multivariate statistical techniques, exploratory as well as inferential, that have been proposed recently for the characterization and detection of activation in both PET and fMRI time series data. In particular, PCA is data driven and does not assume that the neural or hemodynamic response reaches some steady state, nor does it involve correlation with any pre-defined or exogenous experimental design template. In this paper, we present a generalized linear systems framework for PCA based on the singular value decomposition (SVD) model for representation of spatio-temporal fMRI data sets. Statistical inference procedures for PCA, including point and interval estimation will be introduced without the constraint of explicit hypotheses about specific task-dependent effects. The principal eigenvectors capture both the spatial and temporal aspects of fMRI data in a progressive fashion; they are inherently matched to unique and uncorrelated features and are ranked in order of the amount of variance explained. PCA also acts as a variation reduction technique, relegating most of the random noise to the trailing components while collecting systematic structure into the leading ones. Features summarizing variability may not directly be those that are the most useful. Further analysis is facilitated through linear subspace methods involving PC rotation and strategies of projection pursuit utilizing a reduced, lower-dimensional natural basis representation that retains most of the information. These properties will be illustrated in the setting of dynamic time-series response data from fMRI experiments involving pharmacological stimulation of the dopaminergic nigro-striatal system in primates.  相似文献   

4.
A novel local PCA-based method for detecting activation signals in fMRI.   总被引:2,自引:0,他引:2  
A novel local principal component analysis (LPCA) technique is presented for activation signal detection in functional magnetic resonance imaging (fMRI) without explicit knowledge about the shape of the model activation signal. Unlike the traditional PCA methods, our LPCA algorithm is based on a measure of separation between two clusters formed by the signal segments in active periods and inactive periods, which is computed in an eigen-subspace. In addition, we only applied PCA to the temporal sequence of each individual voxel instead of applying PCA to the fMRI data set. In our algorithm, we first applied a linear regression procedure to alleviate the baseline drift artifact. Then, the baseline-corrected temporal signals were partitioned into active and inactive segments according to the paradigm used for the fMRI data acquisition. Principal components were computed from all these segments for each voxel by PCA. By projecting the segments of each voxel onto a linear subspace formed by the corresponding most dominant principal components, two separate clusters were formed from active and inactive segments. An activation measure was defined based on the degree of separation between these two clusters in the projection space. We show experimental results on the activation signal detection from various sets of fMRI data with different types of stimulation by using the proposed LPCA algorithm and the standard t-test method for comparison. Our experiments indicate that the LPCA algorithm in general provides substantial signal-to-noise ratio improvement over the t-test method.  相似文献   

5.
Functional magnetic resonance imaging (fMRI) technique with blood oxygenation level dependent (BOLD) contrast is a powerful tool for noninvasive mapping of brain function under task and resting states. The removal of cardiac- and respiration-induced physiological noise in fMRI data has been a significant challenge as fMRI studies seek to achieve higher spatial resolutions and characterize more subtle neuronal changes. The low temporal sampling rate of most multi-slice fMRI experiments often causes aliasing of physiological noise into the frequency range of BOLD activation signal. In addition, changes of heartbeat and respiration patterns also generate physiological fluctuations that have similar frequencies with BOLD activation. Most existing physiological noise-removal methods either place restrictive limitations on image acquisition or utilize filtering or regression based post-processing algorithms, which cannot distinguish the frequency-overlapping BOLD activation and the physiological noise. In this work, we address the challenge of physiological noise removal via the kernel machine technique, where a nonlinear kernel machine technique, kernel principal component analysis, is used with a specifically identified kernel function to differentiate BOLD signal from the physiological noise of the frequency. The proposed method was evaluated in human fMRI data acquired from multiple task-related and resting state fMRI experiments. A comparison study was also performed with an existing adaptive filtering method. The results indicate that the proposed method can effectively identify and reduce the physiological noise in fMRI data. The comparison study shows that the proposed method can provide comparable or better noise removal performance than the adaptive filtering approach.  相似文献   

6.
The cerebral cortex is the main target of analysis in many functional magnetic resonance imaging (fMRI) studies. Since only about 20% of the voxels of a typical fMRI data set lie within the cortex, statistical analysis can be restricted to the subset of the voxels obtained after cortex segmentation. While such restriction does not influence conventional univariate statistical tests, it may have a substantial effect on the performance of multivariate methods.

Here, we describe a novel approach for data-driven analysis of single-subject fMRI time series that combines techniques for the segmentation and reconstruction of the cortical surface of the brain and the spatial independent component analysis (sICA) of the functional time courses (TCs). We use the mesh of the white matter/gray matter boundary, automatically reconstructed from high-spatial-resolution anatomical MR images, to limit the sICA decomposition of a coregistered functional time series to those voxels which are within a specified region with respect to the cortical sheet (cortex-based ICA, or cbICA). We illustrate our analysis method in the context of fMRI blocked and event-related experimental designs and in an fMRI experiment with perceptually ambiguous stimulation, in which an a priori specification of the stimulation protocol is not possible.

A comparison between cbICA and conventional hypothesis-driven statistical methods shows that cortical surface maps and component TCs blindly obtained with cbICA reliably reflect task-related spatiotemporal activation patterns. Furthermore, the advantages of using cbICA when the specification of a temporal model of the expected hemodynamic response is not straightforward are illustrated and discussed. A comparison between cbICA and anatomically unconstrained ICA reveals that — beside reducing computational demand — the cortex-based approach improves the fitting of the ICA model in the gray matter voxels, the separation of cortical components and the estimation of their TCs, particularly in the case of fMRI data sets with a complex spatiotemporal statistical structure.  相似文献   


7.
Functional magnetic resonance imaging (fMRI) is an effective tool for the measurement of brain neuronal activities. To date, several statistical methods have been proposed for analyzing fMRI datasets to select true active voxels among all the voxels appear to be positively activated. Finding a reliable and valid activation map is very important and becomes more crucial in clinical and neurosurgical investigations of single fMRI data, especially when pre-surgical planning requires accurate lateralization index as well as a precise localization of activation map.Defining a proper threshold to determine true activated regions, using common statistical processes, is a challenging task. This is due to a number of variation sources such as noise, artifacts, and physiological fluctuations in time series of fMRI data which affect spatial distribution of noise in an expected uniform activated region. Spatial smoothing methods are frequently used as a preprocessing step to reduce the effect of noise and artifacts. The smoothing may lead to a shift and enlargement of activation regions, and in some extend, unification of distinct regions.In this article, we propose a bootstrap resampling technique for analyzing single fMRI dataset with the aim of finding more accurate and reliable activated regions. This method can remove false positive voxels and present high localization accuracy in activation map without any spatial smoothing and statistical threshold setting.  相似文献   

8.
In independent component analysis (ICA), principal component analysis (PCA) is generally used to reduce the raw data to a few principal components (PCs) through eigenvector decomposition (EVD) on the data covariance matrix. Although this works for spatial ICA (sICA) on moderately sized fMRI data, it is intractable for temporal ICA (tICA), since typical fMRI data have a high spatial dimension, resulting in an unmanageable data covariance matrix. To solve this problem, two practical data reduction methods are presented in this paper. The first solution is to calculate the PCs of tICA from the PCs of sICA. This approach works well for moderately sized fMRI data; however, it is highly computationally intensive, even intractable, when the number of scans increases. The second solution proposed is to perform PCA decomposition via a cascade recursive least squared (CRLS) network, which provides a uniform data reduction solution for both sICA and tICA. Without the need to calculate the covariance matrix, CRLS extracts PCs directly from the raw data, and the PC extraction can be terminated after computing an arbitrary number of PCs without the need to estimate the whole set of PCs. Moreover, when the whole data set becomes too large to be loaded into the machine memory, CRLS-PCA can save data retrieval time by reading the data once, while the conventional PCA requires numerous data retrieval steps for both covariance matrix calculation and PC extractions. Real fMRI data were used to evaluate the PC extraction precision, computational expense, and memory usage of the presented methods.  相似文献   

9.
The classical principal component analysis technique is enhanced for reconstruction of reflectance spectra of surface colors from the corresponding tristimulus values under a given set of viewing conditions, i.e., D65 illuminant and 1964 standard observer. In this paper, the number of implemented eigenvectors has been virtually extended from three to six by estimation of another set of tristimulus values under illuminant A and 1964 standard observer. The second set of colorimetric data was predicted by the conventional non-linear regression method and used in the spectral reconstruction to produce a fully determined system in the case of six eigenvectors. The improvement obtained from the proposed modification was examined for the recovery of the reflectance spectra of Munsell color chips as well as ColorChecker DC samples. The performance is evaluated by the mean, maximum and standard deviation of color difference values under other sets of light sources. The values of mean, maximum and standard deviation of root mean square (RMS) errors between the reproduced and the actual spectra were also calculated. Results are compared with those obtained from traditional methods using the principal component analysis (PCA) routine. All metrics show that the suggested method leads to considerable improvements in comparison with the standard PCA approach.  相似文献   

10.
A noisy version of independent component analysis (noisy ICA) is applied to simulated and real functional magnetic resonance imaging (fMRI) data. The noise covariance is explicitly modeled by an autoregressive (AR) model of order 1. The unmixing matrix of the data is determined using a variant of the FastICA algorithm based on Gaussian moments. The sources are estimated using the principle of maximum likelihood by modeling the source densities as asymmetric exponential functions. Effect of dimensionality reduction on the effective noise covariance used, accuracy of the obtained mixing matrix and degree of improvement in estimating fMRI sources are investigated. The primary conclusions after using this method of evaluation are as follows: (a) weighting matrix estimates are similar for noisy and conventional ICA in the realm of typical fMRI data, and (b) source estimates are improved by 5% (as measured by the correlation coefficient) in realistic simulated data by explicitly modeling the source densities and the noise, even when just a simple white noise model is used.  相似文献   

11.
Many fMRI analysis methods use a model for the hemodynamic response function (HRF). Common models of the HRF, such as the Gaussian or Gamma functions, have parameters that are usually selected a priori by the data analyst. A new method is presented that characterizes the HRF over a wide range of parameters via three basis signals derived using principal component analysis (PCA). Covering the HRF variability, these three basis signals together with the stimulation pattern define signal subspaces which are applicable to both linear and nonlinear modeling and identification of the HRF and for various activation detection strategies. Analysis of simulated fMRI data using the proposed signal subspace showed increased detection sensitivity compared to the case of using a previously proposed trigonometric subspace. The methodology was also applied to activation detection in both event-related and block design experimental fMRI data using both linear and nonlinear modeling of the HRF. The activated regions were consistent with previous studies, indicating the ability of the proposed approach in detecting brain activation without a priori assumptions about the shape parameters of the HRF. The utility of the proposed basis functions in identifying the HRF is demonstrated by estimating the HRF in different activated regions.  相似文献   

12.

Purpose

The purpose of this work is to characterize the noise in spinal cord functional MRI, assess current methods aimed at reducing noise, and optimize imaging parameters.

Methods

Functional MRI data were acquired at multiple echo times and the contrast-to-noise ratio (CNR) was calculated. Independently, the repetition time was systematically varied with and without parallel imaging, to maximize BOLD sensitivity and minimize type I errors. Noise in the images was characterized by examining the frequency spectrum, and investigating whether autocorrelations exist. The efficacy of several physiological noise reduction methods in both null (no stimuli) and task (thermal pain paradigm) data was also assessed. Finally, our previous normalization methods were extended.

Results

The echo time with the highest functional CNR at 3 Tesla is at roughly 75 msec. Parallel imaging reduced the variance and the presence of autocorrelations, however the BOLD response in task data was more robust in data acquired without parallel imaging. Model-free based approaches further increased the detection of active voxels in the task data. Finally, inter-subject registration was improved.

Conclusions

Results from this study provide a rigorous characterization of the properties of the noise and assessment of data acquisition and analysis methods for spinal cord and brainstem fMRI.  相似文献   

13.
Surface-based functional magnetic resonance imaging (fMRI) analysis is more sensitive and accurate than volume-based analysis for detecting neural activation. However, these advantages are less important in practical fMRI experiments with commonly used 1.5-T magnetic resonance devices because of the resolution gap between the echo planar imaging data and the cortical surface models. We expected high-resolution segmented partial brain echo planar imaging (EPI) data to overcome this problem, and the activation patterns of the high-resolution data could be different from the low-resolution data. For the practical applications of surface-based fMRI analysis using segmented EPI techniques, the effects of some important factors (e.g., activation patterns, registration and local distortions) should be intensively evaluated because the results of surface-based fMRI analyses could be influenced by them. In this study, we demonstrated the difference between activations detected from low-resolution EPI data, which were covering whole brain, and high-resolution segmented EPI data covering partial brain by volume- and surface-based analysis methods. First, we compared the activation maps of low- and high-resolution EPI datasets detected by volume- and surface-based analyses, with the spatial patterns of activation clusters, and analyzed the distributions of activations in occipital lobes. We also analyzed the high-resolution EPI data covering motor areas and fusiform gyri of human brain, and presented the differences of activations detected by volume- and surface-based methods.  相似文献   

14.
Despite its potential advantages for fMRI analysis, fuzzy C-means (FCM) clustering suffers from limitations such as the need for a priori knowledge of the number of clusters, and unknown statistical significance and instability of the results. We propose a randomization-based method to control the false-positive rate and estimate statistical significance of the FCM results. Using this novel approach, we develop an fMRI activation detection method. The ability of the method in controlling the false-positive rate is shown by analysis of false positives in activation maps of resting-state fMRI data. Controlling the false-positive rate in FCM allows comparison of different fuzzy clustering methods, using different feature spaces, to other fMRI detection methods. In this article, using simulation and real fMRI data, we compare a novel feature space that takes the variability of the hemodynamic response function into account (HRF-based feature space) to the conventional cross-correlation analysis and FCM using the cross-correlation feature space. In both cases, the HRF-based feature space provides a greater sensitivity compared to the cross-correlation feature space and conventional cross-correlation analysis. Application of the proposed method to finger-tapping fMRI data, using HRF-based feature space, detected activation in sub-cortical regions, whereas both of the FCM with cross-correlation feature space and the conventional cross-correlation method failed to detect them.  相似文献   

15.
Principal component analysis (PCA) is routinely applied to the study of NMR based metabolomic data. PCA is used to simplify the examination of complex metabolite mixtures obtained from biological samples that may be composed of hundreds or thousands of chemical components. PCA is primarily used to identify relative changes in the concentration of metabolites to identify trends or characteristics within the NMR data that permits discrimination between various samples that differ in their source or treatment. A common concern with PCA of NMR data is the potential over emphasis of small changes in high concentration metabolites that would over-shadow significant and large changes in low-concentration components that may lead to a skewed or irrelevant clustering of the NMR data. We have identified an additional concern, very small and random fluctuations within the noise of the NMR spectrum can also result in large and irrelevant variations in the PCA clustering. Alleviation of this problem is obtained by simply excluding the noise region from the PCA by a judicious choice of a threshold above the spectral noise.  相似文献   

16.
By measuring the changes of magnetic resonance signals during a stimulation, the functional magnetic resonance imaging (fMRI) is able to localize the neural activation in the brain. In this report, we discuss the fMRI application of the spatial independent component analysis (spatial ICA), which maximizes statistical independence over spatial images. Included simulations show the possibility of the spatial ICA on discriminating asynchronous activations or different response patterns in an fMRI data set. An in vivo visual stimulation fMRI test was conducted, and the result shows a proper sum of the separated components as the final image is better than a single component, using fMRI data analysis by spatial ICA. Our result means that spatial ICA is a useful tool for the detection of different response activations and suggests that a proper sum of the separated independent components should be used for the imaging result of fMRI data processing.  相似文献   

17.
In functional magnetic resonance imaging (fMRI) analysis, although the univariate general linear model (GLM) is currently the dominant approach to brain activation detection, there is growing interest in multivariate approaches such as principal component analysis, canonical variate analysis (CVA), independent component analysis and cluster analysis, which have the potential to reveal neural networks and functional connectivity in the brain. To understand the effect of processing options on performance of multivariate model-based fMRI processing pipelines with real fMRI data, we investigated the impact of commonly used fMRI preprocessing steps and optimized the associated multivariate CVA-based, single-subject processing pipelines with the NPAIRS (nonparametric prediction, activation, influence and reproducibility resampling) performance metrics [prediction accuracy and statistical parametric image (SPI) reproducibility] on the Fiswidgets platform. We also compared the single-subject SPIs of univariate GLM with multivariate CVA-based processing pipelines from SPM, FSL.FEAT, NPAIRS.GLM and NPAIRS.CVA software packages (or modules) using a novel second-level CVA. We found that for the block-design data, (a) slice timing correction and global intensity normalization have little consistent impact on the fMRI processing pipeline, but spatial smoothing, temporal detrending or high-pass filtering, and motion correction significantly improved pipeline performance across all subjects; (b) the combined optimization of spatial smoothing, temporal detrending and CVA model parameters on average improved between-subject reproducibility; and (c) the most important pipeline choices include univariate or multivariate statistical models and spatial smoothing. This study suggests that considering options other than simply using GLM with a fixed spatial filter may be of critical importance in determining activation patterns in BOLD fMRI studies.  相似文献   

18.
Spatial independent component analysis (ICA) is a well-established technique for multivariate analysis of functional magnetic resonance imaging (fMRI) data. It blindly extracts spatiotemporal patterns of neural activity from functional measurements by seeking for sources that are maximally independent. Additional information on one or more sources (e.g., spatial regularity) is often available; however, it is not considered while looking for independent components. In the present work, we propose a new ICA algorithm based on the optimization of an objective function that accounts for both independence and other information on the sources or on the mixing model in a very general fashion. In particular, we apply this approach to fMRI data analysis and illustrate, by means of simulations, how inclusion of a spatial regularity term helps to recover the sources more effectively than with conventional ICA. The improvement is especially evident in high noise situations. Furthermore we employ the same approach on data sets from a complex mental imagery experiment, showing that consistency and physiological plausibility of relatively weak components are improved.  相似文献   

19.
Nonnegative matrix factorization (NMF) is a blind source separation (BSS) algorithm which is based on the distinct constraint of nonnegativity of the estimated parameters as well as on the measured data. In this study, according to the potential feasibility of NMF for fMRI data, the four most popular NMF algorithms, corresponding to the following two types of (1) least-squares based update [i.e., alternating least-squares NMF (ALSNMF) and projected gradient descent NMF] and (2) multiplicative update (i.e., NMF based on Euclidean distance and NMF based on divergence cost function), were investigated by using them to estimate task-related neuronal activities. These algorithms were applied firstly to individual data from a single subject and, subsequently, to group data sets from multiple subjects. On the single-subject level, although all four algorithms detected task-related activation from simulated data, the performance of multiplicative update NMFs was significantly deteriorated when evaluated using visuomotor task fMRI data, for which they failed in estimating any task-related neuronal activities. In group-level analysis on both simulated data and real fMRI data, ALSNMF outperformed the other three algorithms. The presented findings may suggest that ALSNMF appears to be the most promising option among the tested NMF algorithms to extract task-related neuronal activities from fMRI data.  相似文献   

20.
A new approach in studying interregional functional connectivity using functional magnetic resonance imaging (fMRI) is presented. Functional connectivity may be detected by means of cross correlating time course data from functionally related brain regions. These data exhibit high temporal coherence of low frequency fluctuations due to synchronized blood flow changes. In the past, this fMRI technique for studying functional connectivity has been applied to subjects that performed no prescribed task ("resting" state). This paper presents the results of applying the same method to task-related activation datasets. Functional connectivity analysis is first performed in areas not involved with the task. Then a method is devised to remove the effects of activation from the data using independent component analysis (ICA) and functional connectivity analysis is repeated. Functional connectivity, which is demonstrated in the "resting brain," is not affected by tasks which activate unrelated brain regions. In addition, ICA effectively removes activation from the data and may allow us to study functional connectivity even in the activated regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号