首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rotational spectrum of cis-cis HOONO has been studied over a broad range of frequencies, 13-840 GHz, using pulsed beam Fourier-transform microwave spectroscopy and room-temperature flow cell submillimeter spectroscopy. The rotational spectrum of the deuterated isotopomer, cis-cis DOONO, has been studied over a subset of this range, 84-640 GHz. Improved spectroscopic constants have been determined for HOONO, and the DOONO spectrum is analyzed for the first time. Weak-field Stark effect measurements in the region of 84-110 GHz have been employed to determine the molecular dipole moments of cis-cis HOONO [mu(a) = 0.542(8) D, mu(b) = 0.918(15) D, mu = 1.07(2) D] and DOONO [mu(a) = 0.517(9) D, mu(b) = 0.930(15) D, mu = 1.06(2) D]. The quadrupole coupling tensor in the principal inertial axis system for the 14N nucleus has been determined to be chi(aa) = 1.4907(25) MHz, chi(bb) = -4.5990(59) MHz, chi(ab) = 3.17(147) MHz, and chi(cc) = 3.1082(59) MHz. Coordinates of the H atom in the center-of-mass frame have been determined with use of the Kraitchman equations, /aH/ = 0.516 A and /bH/ = 1.171 A. The inertial defects of HOONO and DOONO are consistent with a planar equilibrium structure with significant out-of-plane H atom torsional motion. Comparisons of the present results are made to ab initio calculations.  相似文献   

2.
3.
The rotational spectrum of a noble gas-organometallic complex was measured using a pulse molecular beam Fourier transform microwave spectrometer. Rotational transitions for the neutral argon-cyclopentadienyl thallium weakly bound complex were measured in the 4-9 GHz range. Analysis of the spectrum showed that the complex is a prolate symmetric-top rotor with C(5V) symmetry. The experimentally determined molecular parameters for Ar-C(5)H(5) (205)Tl are B=372.4479(3) MHz, D(J)=0.123(2) kHz, and D(JK)=0.45(2) kHz. For Ar-C(5)H(5) (203)Tl, B=373.3478(5) MHz, D(J)=0.113(3) kHz, and D(JK)=0.37(3) kHz. Using a pseudodiatomic model with Lennard-Jones potential yields an approximate binding energy of 339 cm(-1). The argon atom is located on the a-axis of the C(5)H(5)Tl monomer, directly opposite from the thallium metal atom. The measured separation distance between argon and the cyclopentadienyl ring is R=3.56 A. The overall size of the cluster is about 6 A, measuring from argon to thallium. Relatively small D(J) and D(JK) centrifugal distortion constants were observed for the complex, indicating that the structure of Ar-C(5)H(5)Tl is somewhat rigid. MP2 calculations were used to investigate the possible structures and binding energies of the argon-cyclopentadienyl thallium complex. Calculated, counterpoise corrected binding energies are evaluated at R=3.56 A for Ar-C(5)H(5)Tl range from 334 to 418 cm(-1). The experimental binding energy epsilon=339 cm(-1) for Ar-C(5)H(5)Tl falls within this range. The higher-level MP2/aug-cc-pVTZ-PP (thallium)/aug-cc-pVTZ(Ar, C, H) calculation with variable R yielded R(e)=3.46 A and binding energy of 535 cm(-1). Our estimated binding energy for argon-cyclopentadienyl thallium is very similar to the binding energy of argon-benzene. Calculations for the new van der Waals complexes, Ar(C(5)H(5)Tl)(2) and (C(5)H(5)Tl)(2), have been obtained, providing further information on the structures and bonding properties of previously observed cyclopentadienyl thallium polymer chains. The calculated intermolecular distance R(Tl-Cp)=3.05 A for the (CpTl)(2) chain subunit (Cp is cyclopentadienyl, C(5)H(5)) is slightly longer than the measured x-ray value R(M-Cp)(M=Tl)=2.75 A. The x-ray distance R(Tl-Tl)=5.5 A for the chain structure is almost identical to the calculated R(Tl-Tl)=5.51 A for the (C(5)H(5)Tl)(2) dimer.  相似文献   

4.
The rotational spectra of CF(3)I···NH(3) and CF(3)I···N(CH(3))(3) are measured between 6.7 and 18 GHz using a chirped-pulse Fourier transform microwave spectrometer. Transitions in each spectrum are assigned to A and E species associated with ground and excited internal rotor states respectively. Rotational constants, B(0), centrifugal distortion constants, D(J), D(Jm), D(JKm), nuclear quadrupole coupling constants of the (14)N and (127)I atoms, χ(aa)(N) and χ(aa)(I), are determined for each complex. D(JK) is additionally determined for CF(3)I···NH(3). Results are presented for both (14)N and (15)N-substituted isotopologues. All data are consistent with C(3v) symmetric top structures for both complexes. The nuclear quadrupole coupling constants of iodine are determined to be -2230.030(83) MHz and -2241.61(17) MHz in CF(3)I···(14)NH(3) and CF(3)I···(14)N(CH(3))(3) respectively. The data are interpreted through a model that accounts for the internal dynamics of the complexes in order to determine the length of the halogen bond between the iodine and nitrogen atoms, r(N···I). Values of r(N···I) are thus determined to lie in the ranges 3.054 ? > r(N···I) > 3.034 ? and 2.790 ? > r(N···I) > 2.769 ? for CF(3)I···NH(3) and CF(3)I···N(CH(3))(3) respectively.  相似文献   

5.
Femtosecond degenerate four-wave mixing (fs-DFWM) is applied for the measurement of rotational constants of cyclopropane (C3H6). The rotational coherence method yields a very accurate B0 = 20,093.322(12) MHz and centrifugal distortion constants D(J) and D(JK). To exploit the full resolution of the fs-DFWM method, the accuracy of the optical delay measurement was increased by nearly two orders of magnitude, including elimination of effects from the refractive index of air. The fs-DFWM molecular constants are comparable in accuracy to those from high-resolution infrared spectroscopy and are only surpassed by those of dipole distortion microwave spectroscopy. In parallel, the equilibrium structure, vibrationally averaged structure parameters and rotational constants were calculated using high-level ab initio methods and large basis sets. Combining these with the results of previous calculations and the measured rotational constants yields r(e)(C-C) = 1.5034(3) A, r(e)(C-H) = 1.0775(5) A, and alpha(e)(H-C-H) = 115.09(10) degrees.  相似文献   

6.
7.
The microwave spectra of six isotopomers of HCl-N(2)O have been obtained in the 7-19 GHz region with a pulsed molecular beam, Fourier transform microwave spectrometer. The nuclear quadrupole hyperfine structure due to all quadrupolar nuclei is resolved and the spectra are analyzed using the Watson S-reduced Hamiltonian with the inclusion of nuclear quadrupole coupling interactions. The spectroscopic constants determined include rotational constants, quartic and sextic centrifugal distortion constants, and nuclear quadrupole coupling constants for each quadrupolar nucleus. Due to correlations of the structural parameters, the effective structure of the complex cannot be obtained by fitting to the spectroscopic constants of the six isotopomers. Instead, the parameters for each isotopomer are calculated from the A and C rotational constants and the chlorine nuclear quadrupole coupling constant along the a-axis, chi(aa). There are two possible structures; the one in which hydrogen of HCl interacts with the more electronegative oxygen of N(2)O is taken to represent the complex. The two subunits are approximately slipped parallel. For H (35)Cl-(14)N(2)O, the distance between the central nitrogen and chlorine is 3.5153 A and the N(2)O and HCl subunits form angles of 72.30 degrees and 119.44 degrees with this N-Cl axis, respectively. The chlorine and oxygen atoms occupy the opposite, obtuse vertices of the quadrilateral formed by O, central N, Cl, and H. Nuclear quadrupole coupling constants show that while the electric field gradient of the HCl subunit remains essentially unchanged upon complexation, there is electronic rearrangement about the two nitrogen nuclei in N(2)O.  相似文献   

8.
Microwave spectra of the propiolic acid-formic acid doubly hydrogen bonded complex were measured in the 1 GHz to 21 GHz range using four different Fourier transform spectrometers. Rotational spectra for seven isotopologues were obtained. For the parent isotopologue, a total of 138 a-dipole transitions and 28 b-dipole transitions were measured for which the a-dipole transitions exhibited splittings of a few MHz into pairs of lines and the b-type dipole transitions were split by ~580 MHz. The transitions assigned to this complex were fit to obtain rotational and distortion constants for both tunneling levels: A(0+) = 6005.289(8), B(0+) = 930.553(8), C(0+) = 803.9948(6) MHz, Δ(0+)(J) = 0.075(1), Δ(0+)(JK) = 0.71(1), and δ(0+)(j) = -0.010(1) kHz and A(0-) = 6005.275(8), B(0-) = 930.546(8), C(0-) = 803.9907(5) MHz, Δ(0-)(J) = 0.076(1), Δ(0-)(JK) = 0.70(2), and δ(0-)(j) = -0.008(1) kHz. Double resonance experiments were used on some transitions to verify assignments and to obtain splittings for cases when the b-dipole transitions were difficult to measure. The experimental difference in energy between the two tunneling states is 291.428(5) MHz for proton-proton exchange and 3.35(2) MHz for the deuterium-deuterium exchange. The vibration-rotation coupling constant between the two levels, F(ab), is 120.7(2) MHz for the proton-proton exchange. With one deuterium atom substituted in either of the hydrogen-bonding protons, the tunneling splittings were not observed for a-dipole transitions, supporting the assignment of the splitting to the concerted proton tunneling motion. The spectra were obtained using three Flygare-Balle type spectrometers and one chirped-pulse machine at the University of Virginia. Rotational constants and centrifugal distortion constants were obtained for HCOOH···HOOCCCH, H(13)COOH···HOOCCCH, HCOOD···HOOCCCH, HCOOH···DOOCCCH, HCOOD···DOOCCCH, DCOOH···HOOCCCH, and DCOOD···HOOCCCH. High-level ab initio calculations provided initial rotational constants for the complex, structural parameters, and some details of the proton tunneling potential energy surface. A least squares fit to the isotopic data reveals a planar structure that is slightly asymmetric in the OH distances. The formic OH···O propiolic hydrogen bond length is 1.8 ? and the propiolic OH···O formic hydrogen bond length is 1.6 ?, for the equilibrium configuration. The magnitude of the dipole moment was experimentally determined to be 1.95(3) × 10(-30) C m (0.584(8) D) for the 0(+) states and 1.92(5) × 10(-30) C m (0.576(14) D) for the 0(-) states.  相似文献   

9.
The first rotational spectrum of a dinuclear complex, MnRe(CO)(10), has been obtained using a high-resolution pulsed beam microwave spectrometer. Sixty-four hyperfine components of the J=11-->J(')=12 and J=12-->J(')=13 rotational transitions were measured for two rhenium isotopomers. The B values obtained from the experiment are B=200.36871(18) MHz for the (187)Re isotopomer and B=200.5561(10) MHz for the (185)Re isotopomer. The measured rotational constants are in reasonably good agreement with the B values calculated from the x-ray diffraction structural data, and from theoretical calculations. The gas-phase Mn-Re bond distance is approximately 2.99 A, and the calculated value is only slightly longer. The experimental quadrupole coupling constant for the manganese atom is eQq(aa) ((55)Mn)=-16.52(5) MHz, and the corresponding quadrupole coupling constants for the two rhenium isotopomers are eQq(aa) ((187)Re)=370.4(4) MHz and eQq(aa) ((185)Re)=390.9(6) MHz. The quadrupole coupling constants were also determined from a variety of theoretical calculations, with very large Gaussian orbital bases. The best estimates, at a nonrelativistic level, are eQq(aa) ((55)Mn)=0.68 MHz and eQq(aa) ((187)Re)=327.6 MHz with a 874 GTO basis set, but the results are very basis set dependent, especially the sign of the Mn quadrupole coupling. Very slight bending of angles MnC(eq)O(eq) and ReC(eq)O(eq) angles is found in the calculations.  相似文献   

10.
We combine femtosecond time-resolved rotational coherence spectroscopy with high-level ab initio theory to obtain accurate structural information for the nonpolar molecules cyclohexane (C(6)H(12)) and cyclohexane-d(12) (C(6)D(12)). We measured the rotational B(0) and centrifugal distortion constants D(J), D(JK) of the v = 0 states of C(6)H(12) and C(6)D(12) to high accuracy, for example, B(0)(C(6)H(12)) = 4306.08(5) MHz, as well as B(v) for the vibrationally excited states ν(32), ν(6), ν(16) and ν(24) of C(6)H(12) and additionally ν(15) for C(6)D(12). To successfully reproduce the experimental RCS transient, the overtone and combination levels 2ν(32), 3ν(32), ν(32) + ν(6), and ν(32) + ν(16) had to be included in the RCS model calculations. The experimental rotational constants are compared to those obtained at the second-order M?ller-Plesset (MP2) level. Combining the experimental and calculated rotational constants with the calculated equilibrium bond lengths and angles allows determination of accurate semiexperimental equilibrium structure parameters, for example, r(e)(C-C) = 1.526 ± 0.001 ?, r(e)(C-H(axial)) = 1.098 ± 0.001 ?, and r(e)(C-H(equatorial)) = 1.093 ± 0.001 ?. The equilibrium C-C bond length of C(6)H(12) is only 0.004 ? longer than that of ethane. The effect of ring strain due to the unfavorable gauche interactions is mainly manifested as small deviations from the C-C-C, C-C-H(axial), and C-C-H(equatorial) angles from the tetrahedral value.  相似文献   

11.
We combine femtosecond time-resolved rotational coherence spectroscopy with high-level ab initio theory to obtain accurate structural information for the nonpolar antiaromatic molecule 1,3,5,7-cyclooctatetraene (C8H8, COT) and its perdeuterated isotopomer COT-d8 (C8D8). We measure the rotational B0 and centrifugal distortion constants D(J), D(JK) of the v = 0 states of COT and COT-d8 to high accuracy, e.g. B0 (COT) = 2710.329(56) MHz, as well as B(v) for the v = 1 states nu6, nu11, nu17, nu22, and nu41/nu42 of COT. The experimental rotational constants are compared to those obtained from calculations at the coupled-cluster with single, double, and perturbative triples [CCSD(T)] level. The latter also take into account vibrational averaging effects of the ground and vibrationally excited states. Combining the experimental and calculated rotational constants with the calculated equilibrium bond lengths and angles allows us to determine accurate equilibrium structure parameters, e.g., r(e) (C-C) = 147.0 +/- 0.05 pm, r(e) (C=C) = 133.7 +/- 0.1 pm, and r(e) (C-H) = 107.9 +/- 0.1 pm. The equilibrium C-C and C=C bond lengths of COT are compared to those of 1,3-butadiene. The expected effect of decreased pi-electron delocalization due to the twisting of adjacent C=C double bonds in COT relative to butadiene is observed for the C-C bonds but not for the C=C bonds.  相似文献   

12.
The microwave spectra of four isotopologues of the CHClF(2)-HCCH dimer have been measured and used to determine the structure of the complex. An initial scan over the 7-18 GHz region using the chirped-pulse microwave spectrometer at the University of Virginia provided initial assignments of the (35)Cl and (37)Cl isotopologues, with two additional H(13)C(13)CH species assigned using the resonant cavity Balle-Flygare microwave spectrometer at Eastern Illinois University. For the most abundant isotopologue, the rotational constants and quadrupole coupling constants are: A = 3301.21(4) MHz, B = 1353.4268(19) MHz, C = 1153.7351(18) MHz, χ(aa) = 34.681(12) MHz, χ(bb) = -69.70(3) MHz, χ(cc) = 35.02(2) MHz and χ(ab) = -8.8(3) MHz, in good agreement with ab initio calculations at the MP2/6-311++G(2d,2p) level. The alignment of CHClF(2) with respect to acetylene reveals a C-Hπ interaction, with a secondary C-ClH-C interaction also present between the two monomers. The fitted distance between the CHClF(2) hydrogen atom and the center of the triple bond is 2.730(6) ?, the distance between the chlorine atom and the acetylenic hydrogen is 3.061(38) ?, and the C-Hπ angle is 148.2(6)°. In addition, the centrifugal distortion constants give an estimate of the binding energy for the weak interaction of about 4.9(5) kJ mol(-1), in reasonable agreement with several similar complexes.  相似文献   

13.
The rotational and centrifugal distortion constants of 2,6-difluoropyridine have been determined from the analysis of its microwave spectrum. The dipole moment of the molecule and the quadrupole coupling constants of the 14N nucleus have also been evaluated. The observed rotational constants indicate a distortion of the pyridine ring.  相似文献   

14.
The ground-state rotational spectra of the six isotopomers (16)O(2) (14)N(35)Cl, (16)O(2) (14)N(37)Cl, (18)O(16)O(14)N(35)Cl, (18)O(2) (14)N(35)Cl, (16)O(2) (15)N(35)Cl, and (16)O(2) (15)N(37)Cl of nitryl chloride were observed with a pulsed-jet, Fourier-transform microwave spectrometer to give rotational constants, Cl and (14)N nuclear quadrupole coupling, and spin-rotation coupling constants. These spectroscopic constants were interpreted to give r(0), r(s), and r(m) ((2)) versions of the molecular geometry and information about the electronic redistribution at N when nitryl chloride is formed from NO(2) and a Cl atom. The r(m) ((2)) geometry has r(N-Cl)=1.8405(6) A, r(N-O)=1.1929(2) A, and the angle ONO=131.42(4) degrees , while the corresponding quantities for the r(s) geometry are 1.8489 A, 1.1940 A, and 131.73 degrees , respectively. Electronic structure calculations at CCSD(T)cc-pVXZ (X=T, Q, or 5) levels of theory were carried out to give a r(e) geometry, vibration-rotation corrections to equilibrium rotational constants, and values of the (35)Cl and (14)N nuclear hyperfine (quadrupole and spin-rotation) coupling constants in good agreement with experiment. The equilibrium geometry at the CCSD(T)/cc-pV5Z level of theory has r(N-Cl)=1.8441 A, r(N-O)=1.1925 A and the angle ONO=131.80 degrees . The observed rotational constants were corrected for the vibration-rotation effects calculated ab initio to yield semiempirical equilibrium constants which were then fitted to give the following semiempirical equilibrium geometry: r(N-Cl)=1.8467(2) A, r(N-O)=1.1916(1) A, and the angle ONO=131.78(3) degrees .  相似文献   

15.
The ground-state rotational spectra of two weakly bound complexes B···ICF(3) (B = Kr or CO) formed by trifluoroiodomethane have been observed in pulsed jets by using two types of Fourier-transform microwave spectroscopy (chirped-pulse and Fabry-Perot cavity). Both complexes exhibit symmetric-top type spectra, thus indicating that the Kr atom in Kr···ICF(3) and both the C and O atoms in OC···ICF(3) lie along the C(3) axis of ICF(3). The rotational constant B(0), the centrifugal distortion constants D(J) and D(JK), and the iodine nuclear quadrupole coupling constant χ(aa)(I) were determined for each of the isotopologues (84)Kr···ICF(3), (86)Kr···ICF(3), (16)O(12)C···ICF(3), (16)O(13)C···ICF(3), and (18)O(12)C···ICF(3). Interpretation of the spectroscopic constants reveals that the carbon atom of CO is adjacent to I and participates in the weak bond in OC···ICF(3). Simple models based on unperturbed component geometries lead to the distances r(Kr···I) = 3.830(1) ? and r(C···I) = 3.428(1) ? in Kr···ICF(3) and OC···ICF(3), respectively, and to the quadratic force constants for stretching of the weak bond k(σ) = 2.80 N m(-1) and 3.96 N m(-1), respectively. The distances r(Z···I) (Z is the acceptor atom in B), the k(σ) values, and the angular geometries of the pair of complexes B···ICF(3) and B···ICl for a given B are compared when B = Kr, CO, H(2)O, H(2)S, or NH(3). The comparison reveals that the iodine bond in B···ICF(3) is systematically longer and weaker than that of B···ICl, while the angular geometry of the B···I moiety is isomorphic in B···ICF(3) and B···ICl for a given B. It is concluded that -CF(3) is less effective than -Cl as an electron-withdrawing group when attached to an I atom and that the angular geometries of the B···ICF(3) can be predicted by means of a simple rule that holds for many hydrogen- and halogen-bonded complexes.  相似文献   

16.
The intrinsic conformational and structural properties of the bicycle exo-2-aminonorbornane have been probed in a supersonic jet expansion using Fourier-transform microwave (FT-MW) spectroscopy and quantum chemical calculations. The rotational spectrum revealed two different conformers arising from the internal rotation of the amino group, exhibiting small (MHz) hyperfine patterns originated by the (14)N nuclear quadrupole coupling interaction. Complementary ab initio (MP2) and DFT (B3LYP and M05-2X) calculations provided comparative predictions for the structural properties, rotational and centrifugal distortion data, hyperfine parameters, and isomerization barriers. Due to the similarity of the rotational constants, the structural assignment of the observed rotamers and the calculation of the torsion angles of the amino group were based on the conformational dependence of the (14)N nuclear quadrupole coupling hyperfine tensor. In the most stable conformation (ss), the two amino N-H bonds are staggered with respect to the adjacent C-H bond. In the second conformer (st), only one of the N-H bonds is staggered and the other is trans. A third predicted conformer (ts) was not detected, consistent with a predicted conformational relaxation to conformer ss through a low barrier of 5.2 kJ mol(-1).  相似文献   

17.
Rotational spectra of the Ne-Xe-NH3 van der Waals trimer were recorded using a pulsed-nozzle, Fourier transform microwave spectrometer. Both a- and b-type transitions of eight isotopologues, namely 20Ne-132Xe-14NH3, 20Ne-129Xe-14NH3, 20Ne-132Xe-15NH3, 20Ne-129Xe-15NH3, 20Ne-131Xe-15NH3, 22Ne-132Xe-15NH3, 22Ne-129Xe-15NH3, and 22Ne-131Xe-15NH3 were measured and assigned. Nuclear quadrupole hyperfine structures arising from the 14N (nuclear spin quantum number I = 1) and 131Xe (I = 3/2) nuclei were detected and analyzed. The determined rotational constants were used to fit structural parameters. A harmonic force field analysis was performed based on centrifugal distortion constants to extract information about vibrational motions of the complex. A comparison of van der Waals bond lengths and stretching force constants between the Ne-Xe-NH3 trimer and the corresponding dimers indicates that non-additive three-body effects are present in the trimer system. Analyses of the 14N and 131Xe nuclear quadrupole coupling constants suggest that the NH3 unit undergoes nearly free internal rotation within the complex and that the presence of Ne has little effect on the orientation of NH3 with respect to the Xe atom.  相似文献   

18.
The microwave spectrum for N-hydroxypyridine-2(1H)-thione (pyrithione) was measured in the frequency range 6-18 GHz, providing accurate rotational constants and nitrogen quadrupole coupling strengths for three isotopologues, C(5)H(4)(32)S(14)NOH, C(5)H(4)(32)S(14)NOD, and C(5)H(4)(34)S(14)NOH. Pyrithione was found to be in a higher concentration in the gas phase than the other tautomer, 2-mercaptopyridine-N-oxide (MPO). Microwave spectroscopy is best suited to determine which structure predominates in the gas phase. The measured rotational constants were used to accurately determine the coordinates of the substituted atoms and provided sufficient data to determine some of the important structural parameters for pyrithione, the only tautomer observed in the present work. The spectra were obtained using a pulsed-beam Fourier transform microwave spectrometer, with sufficient resolution to allow accurate measurements of the (14)N nuclear quadrupole hyperfine interactions. Ab initio calculations provided structural parameters and quadrupole coupling strengths that are in very good agreement with measured values. The experimental rotational constants for the parent compound are A = 3212.10(1), B = 1609.328(7), and C = 1072.208(6) MHz, yielding the inertial defect Δ(0) = -0.023 amu·?(2) for the C(5)H(4)(32)S(14)NOH isotopologue. The observed near zero inertial defect clearly indicates a planar structure. The least-squares fit structural analysis yielded the experimental bond lengths R(O-H) = 0.93(2) ?, R(C-S) = 1.66(2) ?, and angle (N-O-H) = 105(4)° for the ground state structure.  相似文献   

19.
This paper reports the rotational spectrum and structure of the Ar2-H2S complex and its HDS and D2S isotopomers. The ground state structure has heavy-atom C2v symmetry with the two Ar atoms indistinguishable and H2S freely rotating as evinced by the fact that asymmetric top energy levels with Kp=odd levels are missing. The rotational constants for the parent isotopomer are: A=1733.115(1) MHz, B=1617.6160(5) MHz and C=830.2951(2) MHz. Unlike the Ar-H2S complex, the Ar2-H2S does not show an anomalous isotopic shift in rotational constants on deuterium substitution. However, the intermolecular potential is still quite floppy, leading to very different centrifugal distortion constants for the three isotopomers. The Ar-Ar and Ar-c.m.(H2S) distances are determined to be 3.820 A and 4.105 A, respectively. The A rotational constants for Ar2-H2S/HDS/D2S isotopomers are very close to each other and to the B constant of free Ar2, indicating that H2S does not contribute to the moment of inertia about the a-axis. Ab initio calculations at MP2 level with aug-cc-pVQZ basis set lead to an equilibrium C2v minimum structure with the Ar-Ar line perpendicular to the H-H line and the S away from Ar2. The centrifugal distortion constants, calculated using the ab initio force field, are in reasonable agreement with the experimental values. However, they do not show the variation observed for different isotopmers. The binding energy of Ar2-H2S has been determined to be 507 cm-1(6.0 kJ mol-1) by CBS extrapolation after correcting for basis set superposition error. Potential energy scans point out that the barrier for internal rotation of H2S about its b axis is only 10 cm-1 and it is below the zero point energy (13.5 cm-1) in this torsional degree of freedom. Internal rotation of H2S about its a- and c-axes also have small barriers of about 50 cm-1 only, suggesting that H2S is extremely floppy within the complex.  相似文献   

20.
The pure rotational spectra of the bicyclic aromatic nitrogen heterocycle molecules, quinazoline, quinoxaline, and phthalazine, have been recorded and assigned in the region 13-87 GHz. An analysis, guided by ab initio molecular orbital predictions, of frequency-scanned Stark modulated, jet-cooled millimeter wave absorption spectra (48-87 GHz) yielded a preliminary set of rotational and centrifugal distortion constants. Subsequent spectral analysis at higher resolution was carried out with Fourier transform microwave (FT-MW) spectroscopy (13-18 GHz) of a supersonic rotationally cold molecular beam. The high spectral resolution of the FT-MW instrument provided an improved set of rotational and centrifugal distortion constants together with nitrogen quadrupole coupling constants for all three species. Density functional theory calculations at the B3LYP∕6-311+G?? level of theory closely predict rotational constants and are useful in predicting quadrupole coupling constants and dipole moments for such species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号