首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Free energy of micelle formation has been evaluated for spherical sodium dodecyl sulfate (SDS) in water by a thermodynamic integration method combined with a series of large-scale molecular dynamics calculations following the chemical species model. In particular, free energy change delta mu(n+1)0 with respect to the addition of one surfactant molecule to the spherical micelle of size n was obtained as a function of n. The free energy profile showed a minimum followed by a maximum, which corresponds to a peak in the size distribution. The calculated peak size n = 57 near its critical micelle concentration is in good agreement with the experimental averaged aggregation number n = 55-75 of the SDS micelle. The distribution showed a rather sharp peak, indicating that the size is almost a monodisperse one. The size is likely to be insensitive to the total concentration of the surfactant.  相似文献   

3.
Molecular dynamics simulations to study the behavior of an anionic surfactant close to TiO(2) surfaces were carried out where each surface was modeled using three different crystallographic orientations of TiO(2) (rutile), (001), (100) and (110). Even though all three surfaces were made with the same atoms the orientation was a key to determine adsorption since surfactant molecules aggregated in different ways. For instance, simulations on the surface (100) showed that the surfactant molecules formed a hemicylinder structure whereas the molecules on the surface (110) were attached to the solid by forming a hemisphere-like structure. Structure of the aggregated molecules and surfactant adsorption on the surfaces were studied in terms of tails and headgroups density profiles as well as surface coverage. From density profiles and angular distributions of the hydrocarbon chains it was possible to determine the influence of the solid surface. For instance, on surfaces (100) and (001) the surfactant molecules formed molecular layers parallel to the surface. Finally, it was found that in the solids (100) and (110) where there are oxygen atoms exposed on the surface the surfactant molecules were attached to the surfaces along the sites between the lines of these oxygen atoms.  相似文献   

4.
We show that we can alter the mechanism of micelle/water partitioning by the addition of decanol as a co-surfactant to an SDS micellar solution. Linear solvation energy relationship (LSER) studies indicate that as we increase the amount of decanol added to sodium dodecyl sulfate solution, the hydrogen bond donating ability of the aqueous phase increases and the cavity term of the micellar phase increases. We obtain a better correlation with octanol/water partitioning using the mixed micelle system compared to normal micelle solution. Choosing the appropriate micelle marker is very important. Significant changes in the LSER equations can occur if a different compound is used as the micelle marker.  相似文献   

5.
6.
Molecular dynamics simulations of sodium dodecyl sulfate (SDS)/dodecanol and SDS/hexadecanol monolayers at the air/water interface were investigated where the monolayer mixtures were prepared by two different configurations. In the first configuration, all of the dodecanol (or hexadecanol) molecules were placed together and also the SDS molecules were placed together in the surface area. In the second configuration, the dodecanol (or hexadecanol) molecules were uniformly distributed with the SDS molecules, forming a homogeneous mixture. The results showed that the alcohol tails are more ordered and thicker than the SDS tails in monolayers where the alcohol molecules are close to each other and separated from the SDS. However, the reverse trend is observed in monolayers where the SDS and alcohol molecules are well mixed; that is, the alcohol tails seem to have less order. Studies of how the SDS tails are affected by the presence of long chain alcohols are also discussed. Basically, by increasing the alcohol chain length, the order and the thickness of the SDS tails increased when those molecules were placed all together in a region of the surface area. When both surfactants were well mixed, the order and thickness of the SDS chains decreased as the alcohol chain length increased. Comparisons of the present results with actual experiments of similar systems were performed, and they showed similar tendencies.  相似文献   

7.
A simple and efficient one-pot synthesis of biscoumarin and 3,4-dihydropyrano[c]chromene derivatives using catalytic amounts of SDS in water medium is reported. The catalyst can be recovered by simple filtration and reused.  相似文献   

8.
The surface sensitive technique vibrational sum frequency spectroscopy (VSFS), has been used to study the adsorption behaviour of SDS to the liquid/vapour interface of aqueous solutions, specifically targeting the sulfate headgroup stretches. In the spectral region extending from 980 to 1850 cm(-1), only the vibrations due to the SO(3) group were detectable. The fitted amplitudes for the symmetric SO(3) stretch observed at 1070 cm(-1) for the polarization combinations ssp and ppp, were seen to follow the adsorption isotherm calculated from surface tension measurements. The orientation of the sulfate headgroup in the concentration range spanning from 1.0 mM to above the critical micellar concentration (c.m.c.) was observed to remain constant within experimental error, with the pseudo-C(3) axis close to the surface normal. Furthermore, the effect of increasing amounts of sodium chloride at SDS concentrations above c.m.c. was also studied, showing an increase of approximately 12% in the fitted amplitude for the symmetric SO(3) stretch when increasing the ionic strength from 0 to 300 mM NaCl. Interestingly, the orientation of the SDS headgroup was also observed to remain constant within this concentration range and identical to the case without NaCl.  相似文献   

9.
Well-aligned ZnO nanorods (NRs) were grown on indium-tin-oxide (ITO) slide by the hydrothermal method and used as templates for preparing ZnO/Au composite nanoarrays. The optical and morphological properties of ZnO/Au composites under various HAuCl(4) concentrations were explored via UV-vis absorption spectroscopy, photoluminescence (PL) and scanning electron microscopy (SEM). The density and size of gold nanoparticles (Au NPs) on ZnO NRs can be controlled by adjusting the concentration of HAuCl(4). The optimal ZnO/Au composites display complete photocatalytic degradation of methyl blue (MB) within 60 min, which is superior to that with pure ZnO NRs prepared by the same method. The reason of better photocatalytic performance is that Au NPs act as electron traps and it prevents the rapid recombination of electrons and holes, resulting in the improvement of photocatalytic efficiency. The photocatalytic performance of ZnO/Au composites is mainly controlled by the density of Au NPs formed on ZnO NRs. The application in rapid photodegradation of MB shows the potential of ZnO/Au composite as a convenient catalyst for the environmental purification of organic pollutants.  相似文献   

10.
Influence of mixed aquo-organic solvents viz. water-dimethyl sulfoxide (DMSO), water-formamide (FA), water-dioxane (DX), and water-ethylene glycol (EG) on the micellization of sodium dodecylsulfate (SDS) alone and in presence of neutral polymer polyvinyl pyrrolidone (PVP) was studied. Interaction with PVP initially witnessed formation of critical aggregation concentration (CAC) in the favor of formation of induced small micelles of SDS at a concentration lower than the normal critical micelle concentration (CMC), and later found the formation of normal micelles with extended critical micelle concentrations (CMCe) in solution. The SDS-PVP interaction depended on the nature and composition of the mixed solvents. Besides CAC and CMCe, the maximum Gibbs surface excess at the interface (Γ max), the minimum area (A min) of the dissociated amphiphile anion, and enthalpy of micellization (ΔH m 0 ) were also determined. Configurational state of PVP in aquo-organic media was investigated by the methods of viscometry, dynamic light scattering (DLS), and scanning electron microscope (SEM) methods. The [η] and Huggins constant (k H) were considered to ascertain the overall configuration of PVP in solution. The complexes were formed and aggregated at different stages of their molecular composition. The aggregate sizes were determined by DLS, and the surface morphologies in the solvent removed states were examined by SEM. With reference to bulk and interfacial phenomena, polymer-surfactant interaction is thus considered to be important, and the detailed study herein under taken for SDS-PVP combination and PVP alone in mixed aquo-organic solvent media is a new sort of attempt. Figure
DX and DMSO influenced [η] of PVP, SDS interacted PVP enthalpogram and the SEM image of the PVP in 10 wt% DX  相似文献   

11.
The effect of ethanol on the interaction between the anionic surfactant sodium dodecyl sulfate (SDS) and the nonionic polymer poly(vinylpyrrolidone) (PVP) has been investigated using a range of techniques including surface tension, fluorescence, electron paramagnetic resonance (EPR), small-angle neutron scattering (SANS), and viscosity. Surface tension and fluorescence studies show that the critical micelle concentration (cmc) of the surfactant decreases to a minimum value around 15 wt % ethanol; that is, it follows the cosurfactant effect. However, in the presence of PVP, the onset of the interaction, denoted cmc(1), between the surfactant and the polymer is considerably less dependent on ethanol concentration. The saturation point, cmc(2), however, reflects the behavior of the cmc in that it decreases upon addition of ethanol. This results in a decrease in the amount of surfactant bound to the polymer [C(bound) = cmc(2) - cmc] at saturation. The viscosity of simple PVP solutions depends on ethanol concentration, but since SANS studies show that ethanol has no effect on the polymer conformation, the changes observed in the viscosity reflect the viscosity of the background solvent. There are significant increases in bulk viscosity when the surfactant is added, and these have been correlated with the polymer conformation extracted from an analysis of the SANS data and with the amount of polymer adsorbed at the micelle surface. Competition between ethanol and PVP to occupy the surfactant headgroup region exists; at low ethanol concentration, the PVP displaces the ethanol and the PVP/SDS complex resembles that formed in the absence of the ethanol. At higher ethanol contents, the polymer does not bind to the ethanol-rich micelle surface.  相似文献   

12.
Although sodium dodecyl sulfate (SDS) is routinely used as a denaturing agent for proteins, its presence is highly detrimental on the analysis of peptides and proteins by mass spectrometry. It has been found, however, that when SDS is present in concentrations near to or above its critical micelle concentration (CMC), improvements in the matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) analysis of peptide mixtures or hydrophobic proteins are obtained. To elucidate possible explanations for such improvements, here we have undertaken a study examining the effect of SDS micelles on peptide mixtures. Fluorescently labeled peptides were used as probes to determine whether hydrophobic or hydrophilic peptides interact exclusively with SDS micelles. In addition, four globular proteins were digested with trypsin and then various amounts of SDS were added before MALDI mass spectrometry. To examine the role of mixture complexity on the mass spectral results, the tryptic digest of bovine serum albumin was also fractionated according to hydrophobicity before SDS treatment. Results from these experiments suggest that micelle-peptide interactions increase peptide-matrix cocrystallization irrespective of analyte hydrophobicity. As these studies were performed using the dried-droplet method of sample spotting, the presence of micelles is also hypothesized to reduce Marangoni effects during the crystallization process.  相似文献   

13.
The micelle formation process for a typical anionic surfactant, sodium dodecyl sulfate, and a typical cationic surfactant, dodecyltrimethylammonium bromide, has been investigated in a series of mixed solvents consisting of different concentrations of isomeric hexanediols (1,2-hexanediol and 1,6-hexanediol) in water. The critical micelle concentrations and the degrees of counterion dissociation of the mixed micelles were obtained from conductance experiments. Luminescence probing experiments have been used to determine the concentration of micelles in solution and, hence, the micellar aggregation numbers of the surfactants in the mixed solvent systems. The alcohol aggregation numbers were determined by combining the partition coefficients (obtained using NMR paramagnetic relaxation enhancement experiments) with the micellar concentrations from the luminescence probing experiments. All these results are interpreted in terms of the difference in the interaction of the isomeric hexanediols with the surfactant as a function of the position of the hydroxyl groups on the six-carbon chain of the alcohol. Received: 28 June 2000/Accepted: 5 July 2000  相似文献   

14.
The transient response of hydrophobically modified polyacrylamides (HMPAM) aqueous solutions with sodium dodecyl sulfate (SDS) during step shear rate experiments was evaluated. The experimental protocol involved employing first a low shear rate for a specific time, followed by an abrupt increase in shear rate (applied for the same time) and then finally reducing the shear rate to the initial value and recording the sample relaxation with time. While the second step was characterized by a general anti-thixotropic behavior, a large viscosity peak was observed at the third step at very short times followed by a thixotropic relaxation of the viscosity value. This peak was interpreted as a consequence of the formation of a transient network during the relaxation process. A kinetic model was used to better understand and to describe the thixotropy of HMPAM solutions in the presence of SDS. The kinetic constants obtained from the model decrease in value when the shear rate applied during the second step increases, reflecting the increase in recovery time needed for the system to relax back to a lower strain rate. As expected, as the degree of hydrophobic association increases or the degree of fluid structuring increases, the kinetic constant values strongly decrease.  相似文献   

15.
《Tetrahedron: Asymmetry》2005,16(22):3698-3702
The addition of sodium dodecyl sulfate (SDS) resulted in a dramatic improvement of the enantioselectivity of the lipase-catalyzed hydrolysis of racemic butyl 2-(4-substituted phenoxy)propanoates, racemic butyl 2-(4-isobutylphenyl)propanoate, and racemic butyl 2-(6-methoxy-2-naphthyl)propanoate in an aqueous buffer solution. An increase in the E value by up to two orders of magnitude was observed for some esters. As to the effects of SDS on the structure of a lipase, FT-IR and fluorescence measurements suggest some conformational change and/or an increase of the flexibility of the lipase, although the native secondary structure of the lipase is held even in the presence of 100 mM SDS. The origin of the enantioselectivity enhancement brought about by the addition of SDS is briefly discussed on the basis of the values of the initial rates obtained for each enantiomer of the substrate.  相似文献   

16.
The migration behavior of cationic solutes and influences of the interactions of cationic solutes with sodium dodecyl sulfate (SDS) on the formation of micelles and its critical micelle concentration (CMC) were investigated by capillary electrophoresis at neutral pH. Catecholamines and structurally related compounds, including epinephrine, norepinephrine, dopamine, norephedrine, and tyramine, which involve different extents of hydrophobic, ionic and hydrogen-bonding interactions with SDS surfactant, are selected as cationic solutes. The dependence of the effective electrophoretic mobility of cationic solutes on the concentration of surfactant monomers in the premicellar region provides direct evidence of the formation of ion-pairs between cationic solutes and anionic dodecyl sulfate monomers. Three different approaches, based on the variations of either the effective electrophoretic mobility or the retention factor as a function of surfactant concentration in the premicellar and micellar regions, and the linear relationship between the retention factor and the product of a distribution coefficient and the phase ratio, were considered to determine the CMC value of SDS micelles. The suitability of the methods used for the determination of the CMC of SDS with these cationic solutes was discussed. Depending on the structures of cationic solutes and electrophoretic conditions, the CMC value of SDS determined varies in a wide concentration range. The results indicate that, in addition to hydrophobic interaction, both ionic and hydrogen-bonding interactions have pronounced effects on the formation of SDS micelles. Ionic interaction between cationic solutes and SDS surfactant stabilizes the SDS micelles, whereas hydrogen-bonding interactions weakens the solubilization of the attractive ionic interaction. The elevation of the CMC of SDS depends heavily on hydrogen-bonding interactions between cationic solutes and SDS surfactant. Thus, the CMC value of SDS is remarkably elevated with catecholamines, such as epinephrine and norepinephrine, as compared with norephedrine. In addition, the effect of methanol content in the sample solution of these cationic solutes on the CMC of SDS was also examined.  相似文献   

17.
The interfacial tensions between ethylene and an aqueous solution of SDS were measured using the pendant-drop method at 274.2 and 278.2 K and in the pressure range from 0.1 to 3.1 MPa, including hydrate formation points. The concentrations of sodium dodecyl sulfate (SDS) aqueous solution were 0, 100, 300, 500, 600, 700, 800, 900, and 1000 ppm. The effects of pressure on the critical micelle concentration (CMC) and the surface excess concentration were studied. It was demonstrated that both the CMC and the saturated surface excess concentration decreased with the increase of pressure.  相似文献   

18.
The properties of horseradish peroxidase in sodium dodecyl sulfate (DDS) reversed micelles in benzene-pentanol-water solutions are studied. The potential of the analytical application of direct and reversed DDS micelles is demonstrated using newly developed methods for the determination of peroxidase substrates (hydrogen peroxide and cystein), inhibitor (sulfanylamide), and activator (imidazole) via the oxidation of o-dianisidine (o-D) with hydrogen peroxide.  相似文献   

19.
The separation and selectivity of nine benzophenones in micellar electrokinetic chromatography (MEKC) using sodium dodecyl sulfate (SDS) micelles or sodium cholate (SC) modified mixed micelles were investigated in the pH range 6.5-8.0. The results indicate that the combined effects of buffer pH and SC concentration can greatly affect the separation and selectivity of benzophenones, particularly for benzophenones possessing a hydroxyl substituent at the 4-position of the aromatic ring with respect to the carbonyl moiety when using SDS-SC mixed micelles. Better separability can be obtained with SDS-SC mixed micelles than with SDS micelles. Complete separation of nine benzophenones in MEKC can be achieved with an appropriate choice of buffer pH and the concentration of SDS micelles or SC modified mixed micelles. The dependence of the migration order of those benzophenones based on their structures and solute-micelle interactions is discussed.  相似文献   

20.
The adsorption properties (adsorbed amount, kinetics, and reversibility) of poly(vinylimidazole) (PVI) and sodium dodecyl sulfate from PVI/SDS mixed solutions on negatively charged silica substrates were studied at pH 9 using reflectometry and compared to that measured on colloidal silica by the solution depletion method. In this paper, we will try to gain insight into the effect of PVI/SDS complex composition on the adsorption characteristics of the complex and particularly on the kinetics of the complex adsorption and its consequence on the adsorption reversibility. The properties of the complex in solution were characterized by means of potentiometric titration at a constant pH, binding isotherm, and surface tension measurements. On the basis of the experimental results the prevailing mechanism of the SDS/PVI interaction and the properties of the PVI/SDS complex were evaluated. Both the PVI/SDS complex uptake and the kinetics of the adsorption decreased with the amount of SDS bound to PVI. At low PVI/SDS binding ([SDS](0)CAC) the incoming complex experiences a blocking barrier of an electrostatic nature. This barrier has been confirmed by reversibility measurement, and the respective roles of the complex structure and charge were assessed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号