首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report on an observation of the phase transition between two liquid phases of supercooled confined water in simulations. The temperature of the liquid-liquid transition of water at zero pressure slightly decreases due to confinement in the hydrophobic pore. The hydrophilic confinement affects this temperature in the opposite direction and shifts the critical point of the liquid-liquid transition to a higher pressure. As a result, in a strongly hydrophilic pore the liquid-liquid phase transition becomes continuous at zero pressure, indicating the shift of its critical point from negative to a positive pressure. These findings indicate that experimental studies of water confined in the pores of various hydrophobicity/hydrophilicity may clarify the location of the liquid-liquid critical point of bulk water.  相似文献   

2.
The preferential adsorption of one component of a binary system at the inner surfaces of mesoporous silica glasses was studied in a wide composition range at temperatures close to liquid/liquid phase separation. Confinement effects on the adsorption were investigated by using three controlled-pore glass (CPG-10) materials of different mean pore size (10 to 50 nm). For the experimental system (2-butoxyethanol+water), which exhibits an upper miscibility gap, strong preferential adsorption of water occurs, as the coexistence curve is approached at bulk compositions, at which water is the minority component. In this strong adsorption regime the area-related surface excess amount of adsorbed water decreases with decreasing pore width, while the shift in the volume-related mean composition of the pore liquid shows an opposite trend, i.e., greatest deviation from bulk composition occurring in the most narrow pores. A simple mean-field lattice model of a liquid mixture confined by parallel walls is adopted to rationalize these experimental findings. This model reproduces the main findings of the confinement effect on the adsorption near liquid/liquid phase separation.  相似文献   

3.
The rate of N-glutaryl-L-phenylalanine p-nitroanilide hydrolysis catalyzed by alpha-chymotripsin has been measured in aqueous solutions of cetyltrimethylammonium bromide, tetradecyltrimethylammonium bromide, and dodecyltrimethylammonium bromide at concentrations below and above their critical micellar concentrations (CMC). For the three surfactants considered superactivity was observed, with maximum catalytic efficiencies taking place near the corresponding CMCs. The effect of the surfactants after the CMCs is mostly due to a decreased thermodynamic activity of the substrate due to its incorporation into the micelles. After addition of the surfactants, the Michaelis constant values (corrected to take into account the free substrate concentration) tend to decrease, passing through an ill defined minimum, afterwards reaching a constant value. The catalytic rate constants show the same profiles that the catalytic efficiency, being maxima near the surfactants CMCs. This maximum is more important for the surfactant having the shorter tail. This result is explained by considering that the hydrophobicity of the surfactant influences more the CMC than its association to the enzyme.  相似文献   

4.
He M  Zeng Y  Sun X  Harrison DJ 《Electrophoresis》2008,29(14):2980-2986
We find that the morphology of porous polymer monoliths photopatterned within capillaries and microchannels is substantially influenced by the dimensions of confinement. Porous polymer monoliths were prepared by UV-initiated free-radical polymerization using either the hydrophilic or hydrophobic monomers 2-hydroxyethyl methacrylate or butyl methacrylate, cross-linker ethylene dimethacrylate and different porogenic solvents to produce bulk pore diameters between 3.2 and 0.4 microm. The extent of deformation from the bulk porous structure under confinement strongly depends on the ratio of characteristic length of the confined space to the monolith pore size. The effects are similar in cylindrical capillaries and D-shaped microfluidic channels. Bulk-like porosity is observed for a confinement dimension to pore size ratio >10, and significant deviation is observed for a ratio <5. At the extreme limit of deformation a smooth polymer layer 300 nm thick is formed on the surface of the capillary or microchannel. Surface tension or wetting also plays a role, with greater wetting enhancing deformation of the bulk structure. The films created by extreme deformation provide a rapid and effective strategy to create robust wall coatings, with the ability to photograft various surface chemistries onto the coating. This approach is demonstrated through cationic films used for electroosmotic flow control and neutral hydrophilic coatings for electrophoresis of proteins.  相似文献   

5.
Neutron scattering is employed to investigate the vibrational density of states (VDOS) of the discotic liquid crystal 2,3,6,7,10,11-hexakis[hexyloxy] triphenylene (HAT6) confined to the pores of alumina oxide membranes with different pore sizes. Additionally, the phase transitions were studied by differential scanning calorimetry. The transitions were observed down to the smallest pore size. The decrease of the transition enthalpies versus inverse pore size for both transitions implies an increase of the amount of disordered amorphous material. By extrapolation of its pore size dependence, a critical pore diameter for structure formation of 17 nm is estimated. Similar to the bulk, excess contributions to the VDOS (Boson peak) are also observed for confined HAT6. The Boson peak gains in intensity and shifts to lower frequencies with decreasing pore diameter. This is discussed in the framework of a softening of HAT6 induced by the confinement due to a less-developed plastic crystalline state inside the pores compared to the bulk.  相似文献   

6.
We study a coarse-grained model of A(10)-B(20)-A(10) amphiphilic triblock copolymers in aqueous solution under confinement. We focus on the influence of the wall interaction on the morphology of the ensuing self-assembled structures. We also study the dynamics of the polymers. All our simulations are confined between two walls. We study three different combinations of walls: hydrophobic and hydrophobic, hydrophobic and hydrophilic, hydrophilic and hydrophilic. We moreover elucidate the concentration influence. The conformation and behavior of the copolymer in strongly confined systems depend on the type of wall interaction and concentration.  相似文献   

7.
Measured forces between apolar surfaces in water have often been found to be sensitive to exposure to atmospheric gases despite low gas solubilities in bulk water. This raises questions as to how significant gas adsorption is in hydrophobic confinement, whether it is conducive to water depletion at such surfaces, and ultimately if it can facilitate the liquid-to-gas phase transition in the confinement. Open Ensemble molecular simulations have been used here to determine saturated concentrations of atmospheric gases in water-filled apolar confinements as a function of pore width at varied gas fugacities. For paraffin-like confinements of widths barely exceeding the mechanical instability threshold (spinodal) of the liquid-to-vapor transition of confined water (aqueous film thickness between three and four molecular diameters), mean gas concentrations in the pore were found to exceed the bulk values by a factor of approximately 30 or approximately 15 in cases of N2 and CO2, respectively. At ambient conditions, this does not result in visible changes in the water density profile next to the surfaces. Whereas the barrier to capillary evaporation has been found to decrease in the presence of dissolved gas (Leung, K.; Luzar, A.; and Bratko, D. Phys. Rev. Lett. 2003, 90, 065502), gas concentrations much higher than those observed at normal atmospheric conditions would be needed to produce noticeable changes in the kinetics of capillary evaporation. In simulations, dissolved gas concentrations corresponding to fugacities above approximately 40 bar for N2, or approximately 2 bar for CO2, were required to trigger expulsion of water from a hydrocarbon slit as narrow as 1.4 nm. For nanosized pore widths corresponding to the mechanical instability threshold or above, no significant coupling between adsorption layers at opposing confinement walls was observed. This finding explains the approximately linear increase in gas solubility with inverse confinement width and the apparent validity of Henry's law in the pores over a broad fugacity range.  相似文献   

8.
In this article, the validity and accuracy of the CS-MT model is evaluated by using it to model the micellization behavior of seven nonionic surfactants in aqueous solution. Detailed information about the changes in hydration that occur upon the self-assembly of the surfactants into micelles was obtained through molecular dynamics simulation and subsequently used to compute the hydrophobic driving force for micelle formation. This information has also been used to test, for the first time, approximations made in traditional molecular-thermodynamic modeling. In the CS-MT model, two separate free-energy contributions to the hydrophobic driving force are computed. The first contribution, gdehydr, is the free-energy change associated with the dehydration of each surfactant group upon micelle formation. The second contribution, ghydr, is the change in the hydration free energy of each surfactant group upon micelle formation. To enable the straightforward estimation of gdehydr and ghydr in the case of nonionic surfactants, a number of simplifying approximations were made. Although the CS-MT model can be used to predict a variety of micellar solution properties including the micelle shape, size, and composition, the critical micelle concentration (CMC) was selected for prediction and comparison with experimental CMC data because it depends exponentially on the free energy of micelle formation, and as such, it provides a stringent quantitative test with which to evaluate the predictive accuracy of the CS-MT model. Reasonable agreement between the CMCs predicted by the CS-MT model and the experimental CMCs was obtained for octyl glucoside (OG), dodecyl maltoside (DM), octyl sulfinyl ethanol (OSE), decyl methyl sulfoxide (C10SO), decyl dimethyl phosphine oxide (C10PO), and decanoyl-n-methylglucamide (MEGA-10). For five of these surfactants, the CMCs predicted using the CS-MT model were closer to the experimental CMCs than the CMCs predicted using the traditional molecular-thermodynamic (MT) model. In addition, CMCs predicted for mixtures of C10PO and C10SO using the CS-MT model were significantly closer to the experimental CMCs than those predicted using the traditional MT model. For dodecyl octa(ethylene oxide) (C12E8), the CMC predicted by the CS-MT model was not in good agreement with the experimental CMC and with the CMC predicted by the traditional MT model, because the simplifying approximations made to estimate gdehydr and ghydr in this case were not sufficiently accurate. Consequently, we recommend that these simplifying approximations only be used for nonionic surfactants possessing relatively small, non-polymeric heads. For MEGA-10, which is the most structurally complex of the seven nonionic surfactants modeled, the CMC predicted by the CS-MT model (6.55 mM) was found to be in much closer agreement with the experimental CMC (5 mM) than the CMC predicted by the traditional MT model (43.3 mM). Our results suggest that, for complex, small-head nonionic surfactants where it is difficult to accurately quantify the hydrophobic driving force for micelle formation using the traditional MT modeling approach, the CS-MT model is capable of making reasonable predictions of aqueous micellization behavior.  相似文献   

9.
The bicanonical statistical ensemble method has been used to calculate at the molecular level the free energy, entropy, and work of hydration of single-charged sodium cation in a model planar nanopore with structureless hydrophilic walls. The calculations have been performed in terms of a detailed many-particle model of intermolecular interactions calibrated with respect to experimental data on the free energy and enthalpy of the initial reactions of attachment in water vapor. In contrast to chlorine anion, at initial stages of formation, the hydration shell of sodium cation has a loose chain structure, which is reflected in the character of the interaction with pore walls and the behavior of entropy. Under the conditions of weakly hydrophilic walls, the system loses its stability; however, the stability remains preserved in a pore with strongly hydrophilic walls. Hydrophilic walls stabilize the system and shift the onset of hydration toward lower vapor pressures by several orders of magnitude.  相似文献   

10.
We use grand canonical transition-matrix Monte Carlo and discontinuous molecular dynamics simulations to generate precise thermodynamic and kinetic data for the equilibrium hard-sphere fluid confined between smooth hard walls. These simulations show that the pronounced inhomogeneous structuring of the fluid normal to the confining walls, often the primary focus of density functional theory studies, has a negligible effect on many of its average properties over a surprisingly broad range of conditions. We present one consequence of this insensitivity to confinement: a simple analytical equation relating the average density of the confined fluid to that of the bulk fluid with equal activity. Nontrivial implications of confinement for average fluid properties do emerge in this system, but only when the fluid is both (i) dense and (ii) confined to a gap smaller than approximately three particle diameters. For this limited set of conditions, we find that "in-phase" oscillatory deviations in excess entropy and self-diffusivity (relative to the behavior of the bulk fluid at the same average density) occur as a function of gap size. These paired thermodynamic/kinetic deviations from bulk behavior appear to reflect the geometric packing frustration that arises when the confined space cannot naturally accommodate an integer number of particle layers.  相似文献   

11.
The glassy dynamics of poly(propylene glycol) (PPG) and poly(methyl phenyl siloxane) (PMPS) confined to nanoporous glasses (pore sizes 2.5–20 nm) investigated by dielectric spectroscopy, temperature modulated DSC and neutron scattering is compared. For both systems the relaxation rates estimated from dielectric spectroscopy and temperature modulated DSC agree quantitatively indicating that both experiments sense the glass transition.For PPG the glassy dynamics in nanopores is determined by a counterbalance of an adsorption and a confinement effect where the temperature dependence of the relaxation times obeys the Vogel/Fulcher/Tammann (VFT-) equation. The former effect results from an interaction of the confined macromolecules with the internal surfaces which in general slows down the molecular dynamics. A confinement effect leads to an acceleration of the segmental dynamics compared to the bulk state and points to an inherent length scale on which the glassy dynamics takes place. The step of the specific heat capacity cp at the glass transition vanishes at a finite length scale of 1.8 nm. This result supports further the conception that a characteristic length scale is relevant for glassy dynamics.For PMPS down to a pore size of 7.5 nm the temperature dependence of the relaxation times follows the VFT-dependence and a confinement effect is observed like for PPG. At a pore size of 5 nm this changes to an Arrhenius-like behavior with a low activation energy. At the same pore size cp vanishes for PMPS. This points to a dramatic change in the character of molecular motions responsible for glassy dynamics and supports further the relevance of a characteristic length scale on which it takes place.Quasielastic neutron scattering experiments on PMPS reveal that the microscopic dynamics characterized by the mean square displacement depends on confinement above the glass transition. The diffusive character of the relevant molecular motions seems to disappear at a length scale of about 1.6 nm.  相似文献   

12.
The reorientation dynamics of water confined within nanoscale, hydrophilic silica pores are investigated using molecular dynamics simulations. The effect of surface hydrogen-bonding and electrostatic interactions are examined by comparing with both a silica pore with no charges (representing hydrophobic confinement) and bulk water. The OH reorientation in water is found to slow significantly in hydrophilic confinement compared to bulk water, and is well-described by a power-law decay extending beyond one nanosecond. In contrast, the dynamics of water in the hydrophobic pore are more modestly affected. A two-state model, commonly used to interpret confined liquid properties, is tested by analysis of the position-dependence of the water dynamics. While the two-state model provides a good fit of the orientational decay, our molecular-level analysis evidences that it relies on an over-simplified picture of water dynamics. In contrast with the two-state model assumptions, the interface dynamics is markedly heterogeneous, especially in the hydrophilic pore and there is no single interfacial state with a common dynamics.  相似文献   

13.
14.
Confined colloidal systems have been the subject of extensive theoretical and experimental research, and the recent observation of long-range like-charge attraction in such systems has only highlighted their peculiar behavior. On the other hand, surfactant solutions are often used in small confined space, yet their behavior in confinement has received relatively little attention. A distinct feature of confined self-assembling systems is that the aggregates are capable of adjusting their composition, size, and shape in response to their external environment, which may lead to very different phase characteristics compared to bulk solutions. The primary objective of this study is to explore the effects of varying micelle composition on the structural behavior of a confined mixed ionic micellar solution. Mesoscale canonical Monte Carlo simulations were used to probe the structure of the confined solution, while a molecular-thermodynamic model was used to systematically account for the change in micelle size as we varied its composition. Significant micelle ordering was found under certain conditions, which implies that large deviations from the minimum-energy micelle configuration may not be entropically favorable. Accumulation of micelles along the midplane was observed when the confining walls are weakly charged, suggesting that micelle shape transformation should be considered in more detail. On the other hand, with high wall charge density, apparent attraction was found between like-charged micelles and wall. These findings point to the need for a more quantitative theoretical treatment in describing surfactant self-assembly in confined geometries.  相似文献   

15.
用粗粒化的分子动力学(MD)模拟方法从分子层次研究了受限于粗糙壁内的聚合物熔体的动力学性质. 结果表明, 对于链长较短的受限聚合物熔体体系, 随着膜厚的增加, 体系内部高分子链的松弛时间逐渐减少; 然而对于链长较长的受限体系, 聚合物链的松弛时间随着膜厚的增加先减少后增加. 推测这种由于链长的变化所引起的动力学性质的差异源自受限熔体内聚合物链聚集状态的改变, 并且通过考察交叠参数对这种改变进行了分析. 结果表明, 在膜厚增加的过程中, 决定受限状态高分子长链松弛机理的因素逐渐从受限效应转变成为链间的缠结效应.  相似文献   

16.
Measurements of the specific heat and the static dielectric permittivity of heptyloxycyanobiphenyl (7OCB) confined to the 0.2 microm diameter parallel cylindrical pores of Anopore membranes in the isotropic phase and nematic mesophase, are presented. A comparison between the bulk and the confined 7OCB in treated and untreated pore wall surfaces using a chemical surfactant (HTBA) is performed. Both the treated and untreated membrane confinements seem to affect the nematic-to-isotropic phase transition by a downshift in transition temperature and some rounding at the specific-heat maximum, in a way similar to that which was earlier published for other liquid crystals confined in the same geometry. The static dielectric measurements clearly point out that untreated membrane confinement is axial, with the nematic director aligned parallel to the pore axis being homeotropic bulklike, i.e., with the nematic director aligned perpendicular to the electrode cell surfaces. After chemical surfactant treatment, the nematic director is constrained in a radial alignment being perpendicular to the pore walls. The dielectric measurements are revealed to be specially sensible to analyze the surface-induced nematic order due to the pore wall. The tricritical nature of the nematic-to-isotropic phase transition in bulk 7OCB as well as in treated and untreated Anopore confined geometries is discussed through both the specific heat and the static dielectric data.  相似文献   

17.
A simple explanation is given for the low-temperature density minimum of water confined within cylindrical pores of ordered nanoporous materials of different pore size. The experimental evidence is based on combined data from in-situ small-angle scattering of X-rays (SAXS) and neutrons (SANS), corroborated by additional wide-angle X-ray scattering (WAXS). The combined scattering data cannot be described by a homogeneous density distribution of water within the pores, as was originally suggested from SANS data alone. A two-step density model reveals a wall layer covering approximately two layers of water molecules with higher density than the residual core water in the central part of the pores. The temperature-induced changes of the scattering signal from both X-rays and neutrons are consistent with a minimum of the average water density. We show that the temperature at which this minimum occurs depends monotonically on the pore size. Therefore we attribute this minimum to a liquid-solid transition of water influenced by confinement. For water confined in the smallest pores of only 2 nm in diameter, the density minimum is explained in terms of a structural transition of the surface water layer closest to the hydrophilic pore walls.  相似文献   

18.
Fluorescence probe and nuclear magnetic resonance (NMR) methods were employed to investigate the micellation of prepared crown ether surfactants, e.g. decyl 15‐crown‐5 and decyl 18‐crown‐6. Pyrene was employed as the fluorescence probe to evaluate the critical micellar concentration (CMC) of these surfactants in aqueous solutions while spin lattice relaxation times (T1) and chemical shifts of H‐1 NMR were applied in non‐aqueous solutions. Decyl 15‐crown‐5 with lower CMC forms micelles much easier than decyl 18‐crown‐6 with higher CMC in aqueous solutions, whereas decyl 18‐crown‐6 forms micelles easier than decyl 15‐crown‐5 in nonaqueous solutions. Comparison of the CMC of crown ether surfactants and other polyoxyethylene surfactants such as decylhexaethylene glycol was made. Effects of salts and solvents on the micellar formation were also investigated. In general, additions of both alkali metal salts and polar organic solvents into the aqueous surfactant solutions increased in the CMC of these surfactants. The formation of micelles in organic solvents such as methanol and acetonitrile was successfully observed by the NMR method while it was difficult to study these surfactants in organic solutions by the pyrene fluorescence probe method. The NMR study revealed that the formation of micelles resulted in the decrease in all H‐1 spin lattice relaxation times (T1) of hydrophobic groups, e.g. CH3 and CH2, and hydrophilic group OCH2 of these surfactants. However, upon the micellar formation, the H‐1 chemical shifts (δ) of these surfactant hydrophobic groups were found to shift to downfield (increased δ) while the chemical shift of the hydrophilic group OCH2 moved to up‐field. Comparison of the spin lattice relaxation time and H‐1 chemical shift methods was also made and discussed.  相似文献   

19.
Kinetic and equilibrium aspects of three different poly(ethylene oxide) alkylethers (C12E5, C12E7, C14E7) near a flat cellulose surface are studied. The equilibrium adsorption isotherms look very similar for these surfactants, each showing three different regions with increasing surfactant concentration. At low surfactant content both the headgroup and the tail contribute to the adsorption. At higher surface concentrations, lateral attraction becomes prominent and leads to the formation of aggregates on the surface. The general shape of the isotherms and the magnitude of the adsorption resemble mostly those for hydrophilic surfaces, but both the ethylene oxide and the aliphatic segments determine affinity for the surface. The adsorption and desorption kinetics are strongly dependent on surfactant composition. At bulk concentrations below the CMC, the initial adsorption rate is attachment-controlled. Above the CMC, the micellar diffusion coefficient and the micellar dissociation rate play a crucial role. For the most hydrophilic surfactant, C12E7, both parameters are relatively large. In this case, the initial adsorption rate increases with increasing surfactant concentration, also above the CMC. For C12E5 and C14E7 there is no micellar contribution to the initial adsorption rate. The initial desorption kinetics are governed by monomer detachment from the surface aggregates. The desorption rate constants scale with the CMC, indicating an analogy between the surface aggregates and those formed in solution.  相似文献   

20.
The effect of solvation and confinement on the conformational equilibria and kinetics of n-butane is examined using molecular dynamics simulations of the bulk and confined fluids and compared to appropriately chosen reference states. Clear evidence for a solvent shift of the preferred conformation in bulk n-butane is found. At a temperature of 292 K and a density of 6.05 nm-3 a small solvent shift in favor of gauche is observed (similar to previously reported values), and the shift increases substantially with an increase in density to 8.28 nm-3. The rate of torsional interconversion from the trans to the gauche state, calculated using the relaxation function method, was found to increase with increasing temperature and density. The rate constants kTG and kGT have an Arrhenius temperature dependence yielding activation energies significantly lower than the trans-gauche and gauche-trans barrier heights in the torsional potential for a free molecule, depending on the density. In the confined phase, we considered the same densities as simulated in the bulk phase, and for four different values of the physical pore width (approximately 1.5-4.0 nm). At the high density, we find that the position of the trans-gauche equilibrium is displaced towards excess trans compared with the bulk phase, reflecting the confinement and interactions of the molecules with the pore wall. The isomerization rate is found to decrease with decreasing pore width. Again, we find that the kinetics obeys an Arrhenius rate law and the activation energy for the trans-gauche and gauche-trans interconversions is slightly smaller than that of the bulk fluid at the same density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号