首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Commercially available, replaceable sieving matrices and their solvent modulated forms were evaluated for use in on-the-fly fluorescence lifetime detection of dye-labeled DNA fragments in capillary electrophoresis. The fragments were labeled with dyes that can be excited by the 488 nm line of an argon ion laser and have lifetimes in the range of 0.8 ns to 3.8 ns. The sieving matrices and buffer systems included poly(vinylpyrrolidone) (PVP), poly(ethyleneoxide) (PEO), hydroxyethylcellulose (HEC), Tris-borate-EDTA (TBE) and Tris-TAPS-EDTA buffers modified with DMSO and formamide. Selection of the optimal sieving matrix is based on the separation efficiency and the enhancement of lifetime resolution of DNA fragments. Best results for both electrophoretic resolution and lifetime detection were obtained using a poly(ethyleneoxide)/TBE gel buffer in the presence of 10% formamide.  相似文献   

2.
Commercially available, replaceable sieving matrices and their solvent modulated forms were evaluated for use in on-the-fly fluorescence lifetime detection of dye-labeled DNA fragments in capillary electrophoresis. The fragments were labeled with dyes that can be excited by the 488 nm line of an argon ion laser and have lifetimes in the range of 0.8 ns to 3.8 ns. The sieving matrices and buffer systems included poly(vinylpyrrolidone) (PVP), poly(ethyleneoxide) (PEO), hydroxyethylcellulose (HEC), Tris-borate-EDTA (TBE) and Tris-TAPS-EDTA buffers modified with DMSO and formamide. Selection of the optimal sieving matrix is based on the separation efficiency and the enhancement of lifetime resolution of DNA fragments. Best results for both electrophoretic resolution and lifetime detection were obtained using a poly(ethyleneoxide)/TBE gel buffer in the presence of 10% formamide. Received: 25 August 2000 / Revised: 7 November 2000 / Accepted: 14 November 2000  相似文献   

3.
A rapid on-column DNA labeling technique is used to detect viral restriction DNA fragments by capillary electrophoresis-laser induced fluorescence detection. Intercalating dyes such as POPO3 or ethidium homodimer-2 are incorporated into the detection buffer. The cationic dyes migrate into the capillary during electrophoresis and bind to the oppositely migrating DNA fragments. A post-column sheath-flow fluorescence detector is used in the experiment. Excellent labeling efficiency is achieved at minimal background fluorescence by diluting the dyes to between 1 x 10(-7) M and 5 x 10(-7) M in a buffer with low ionic strength relative to the running buffer within the capillary. This dilute sheath-flow buffer allows stacking of dye molecules inside the capillary when an electric field is applied. Calibration curves using a series of DNA size markers (between 72 and 1353 base pairs) were linear over an order of magnitude in DNA concentration. Sensitivity also increased linearly with fragment length, and detection limits ranged from 4 x 10(-14) M to 5 x 10(-13) M for the size-standards. Analysis of cloned viral DNA using duck hepatitis B virus demonstrated a concentration detection limit of 3.9 x 10(-16) M. Last, the technique produced very high separation efficiency, 14 x 10(6) theoretical plates which is greater than 47 x 10(6) plates m-1, for the duck hepatitis B viral genome.  相似文献   

4.
Four acridone dyes and dye-labeled primers were characterized for use in four-decay DNA sequencing. In the four-decay scheme, fluorescence lifetime replaces spectral ("color") selectivity for distinguishing between four base-specific labels in a single-lane capillary electrophoresis (CE) separation of the DNA fragments. Prior to the introduction of the acridone dyes, a major obstacle to four-decay detection was the lack of four suitable dyes with resolvable lifetimes. The four acridone dyes, whether free in solution or tethered to DNA primer, exhibit significant differences among their lifetimes and are well-suited to use together in four-decay sequencing. The lifetimes of the four dye-labeled DNA primers that were sequentially injected and detected on-the-fly in a 2% POP6 sequencing gel were 4, 6, 11 and 14 ns. A 405 nm violet laser diode provides optimal excitation of the four dyes.  相似文献   

5.
建立了毛细管电泳分离-激光诱导荧光检测(CE-LIFD)分析分枝杆菌脱氧核糖核酸(DNA)限制性内切酶谱的新方法。用聚合酶链反应(PCR)扩增分枝杆菌hsp65基因的长度为439 bp的片段,该扩增片段经限制性内切酶BstEⅡ和 HaeⅢ酶切后,分别用CE-LIFD装置和常规琼脂糖电泳(AGE)对比检测酶切片段。对PCR扩增片段的酶切样品的预处理和CE条件进行了优化,获得了8种分枝杆菌DNA的限制性内切酶谱图。 DNA片段相对迁移时间的相对标准偏差(RSD)≤3.6%。结果表明,CE的分离效能明显高于AGE,是研究DNA限制性内切酶谱的更有效的检测手段。  相似文献   

6.
A novel method is presented to detect DNA fragments separated by capillary electrophoresis (CE) with laser-induced fluorescence (LIF) detection using inverse-flow derivatization. In electrophoresis, the intercalating dye, thiazol orange was only added to the separation buffer at the positive polarity. The negatively charged DNA fragments migrated from the negative polarity to the positive polarity, while the positively charged dye migrated in the opposite direction. When DNA fragments met with dye ions, the DNA–dye complexes were formed. The complexes continued migrating to the positive end, due to their net negative charges. When the complexes passed through the detection window, the fluorescent signals were generated. Importantly, DNA fragments migrated as their native state before DNA–dye complexes were formed. This procedure was used to detect double stranded DNA (dsDNA) and single stranded DNA (ssDNA) fragments, and polymerase chain reaction (PCR) products. The excellent resolution and good reproducibility of DNA fragments were achieved in non-gel sieving medium. This procedure may be useful in genetic mutation/polymorphism detections.  相似文献   

7.
Ueda M  Kiba Y  Abe H  Arai A  Nakanishi H  Baba Y 《Electrophoresis》2000,21(1):176-180
A laser-induced fluorescence detection system coupled with a highly sensitive silicon-intensified target (SIT) camera is successfully applied to the imaging of a band for DNA fragment labeling by fluorescence dye in a microchannel, and to the visualizing of the separation process on a microfabricated chip. We demonstrated that an only 6 mm separation channel is sufficient for the separation of triplet repeat DNA fragment and DNA molecular marker within only 12 s. The separation using the microfabricated capillary electrophoresis device is confirmed to be at least 18 times faster than the same separation carried out by conventional capillary electrophoresis with 24.5 cm effective length. The use of a short capillary with 8.5 cm effective length is also efficient for fast separation of DNA; however, the microchip technology is even faster than capillary electrophoresis using a short capillary.  相似文献   

8.
The efficiency of capillary electrophoresis was demonstrated in determining food dyes in alcoholic beverages. The relative standard deviation was below 10% in the dye concentration range between 5 and 200 mg/L.  相似文献   

9.
We are studying dye-imidazole conjugates ("IMI dyes") as reagents for labeling phosphomonoesters such as nucleotides. Previously we have employed a BODIPY dye in our IMI reagents, and analyzed the labeled products by capillary electrophoresis with laser-induced fluorescence detection (CE-LIF) involving an argon ion laser. (The BODIPY fluorophore is a 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene). Here we broaden the technology by preparing a DBD-IMI dye [DBD = 4-(N,N-dimethylaminosulfonyl)-2,1,3-benzoxadiazole], and using a helium-cadmium laser. While DBD-IMI (IMI3) is about 50x more stable photolytically than a BODIPY-IMI dye (IMI2, a conjugate of a BODIPY dye with histamine, was tested), the detection limit for IMI2 (5.10(-11) M; S/N = 5, CE-LIF with an argon ion laser) is tenfold better than that for IMI3 (5.10(-10) M, S/N = 5, helium-cadmium laser). IMI3 conjugates of the four major DNA nucleotides were prepared and detected by CE-LIF.  相似文献   

10.
Capillary electrophoresis of crude biological samples with time-resolved fluorescence (TRF) detection enables elimination of interference from organic fluorophores and from light scattering. Because the fluorescence lifetime of biological substances and impurities overlaps the fluorescence lifetime of conventional labeling dyes, TRF detection with conventional organic labeling dyes suffers from background fluorescence. In this work, we synthesized a luminescent lanthanide chelating reagent to covalently bind the 5′-end of DNA through its dichroic functional group while retaining the unique luminescent properties of the lanthanide chelate, i.e. large Stokes shift, sharp emission, and a long luminescence lifetime in the microsecond to millisecond range. The luminescence of lanthanide chelates is inherently quenched by dissociation of the central metals in typical biological buffers containing a strong chelator, for example EDTA or phosphate; the synthesized Eu3+ chelate reagent, however, was stable even in EDTA solutions. In addition to stability in biological buffer solution, the synthesized Eu3+ chelate reagent enabled direct labeling of single-stranded oligonucleotides, and was used for DNA hybridization assay by time-resolved capillary gel electrophoresis. DNA hybridization assay in fetal bovine serum was also demonstrated.  相似文献   

11.
A method based on capillary zone electrophoresis coupled with photodiode-array detection has been developed to determine several sulfonated dyes, including a sulfonated dye (acid yellow 1), and the sulfonated azo dyes acid orange 7, acid orange 12, acid orange 52, acid red 26, acid red 27 and acid red 88. A CElect-FS75 CE column is used. The electrophoresis buffer contains a 1:5 dilution of 10 mM phosphoric acid and tetrabutylammonium hydroxide buffer (pH 11.5), and 25 mM of triethylamine, the final pH being 11.55. The detection limits for the seven dyes ranged from 0.1 to 4.53 microg/ml. Spiked river water samples (100 ml), containing different concentration levels (0.025-0.150 microg/ml) of the dyes were analyzed after acidification (pH 3) and pre-concentration in disposable SPE Oasis HLB, 1 ml cartridges.  相似文献   

12.
McWhorter S  Soper SA 《Electrophoresis》2000,21(7):1267-1280
As capillary electrophoresis continues to focus on miniaturization, either through reducing column dimensions or situating entire electrophoresis systems on planar chips, advances in detection become necessary to meet the challenges posed by these electrophoresis platforms. The challenges result from the fact that miniaturization requires smaller load volumes, demanding highly sensitive detection. In addition, many times multiple targets must be analyzed simultaneously (multiplexed applications), further complicating detection. Near-infrared (NIR) fluorescence offers an attractive alternative to visible fluorescence for critical applications in capillary electrophoresis due to the impressive limits of detection that can be generated, in part resulting from the low background levels that are observed in the NIR. Advances in instrumentation and fluorogenic labels appropriate for NIR monitoring have led to a growing number of examples of the use of NIR fluorescence in capillary electrophoresis. In this review, we will cover instrumental components used to construct ultrasensitive NIR fluorescence detectors, including light sources and photon transducers. In addition, we will discuss various types of labeling dyes appropriate for NIR fluorescence and finally, we will present several applications that have used NIR fluorescence in capillary electrophoresis, especially for DNA sequencing and fragment analysis.  相似文献   

13.
建立一种毛细管电泳快速高效检测限制性内切酶酶切产物的方法, 使其更好地用于基因诊断. 以甲基纤维素(Methyl cellulose, MC)为筛分介质, 用pUC19 DNA/Msp I (Hpa II) Marker标准DNA片段为实验对象, 通过考察筛分介质的浓度、pH值、毛细管的温度和运行电压优化出分离小于600 bp的双链DNA片段的最适条件, 并将此方法应用于临床59例胃癌患者肿瘤组织H-ras基因12位密码子点突变情况的检测. MC是一种良好的筛分介质, 运用其进行毛细管电泳对于遗传性疾病的诊断将更加快速、准确、简便、灵敏.  相似文献   

14.
The photophysical properties of two typical cyanine dyes [3,3'-diethyl-9-methyl-thiacarbocyanine iodide (dye A) and anhydro-3,3'-disulfopropyl-5,5'-diphenyl-9-ethyloxacarbocyanine hydroxide (dye B)] in the absence and presence of TiO(2) colloids have been investigated by UV-visible spectroscopy, (1)H-NMR spectroscopy, fluorescence spectroscopy, fluorescence lifetime measurements, and ESR measurements. It was found from the absorption spectra and NMR results that there are two isomers in the ground state of these dyes. Steady-state fluorescence spectra show that the fluorescence intensities of dye A and dye B are enhanced and quenched by TiO(2) colloids, respectively. Time-resolved fluorescence lifetime measurements indicate that the lifetimes of dye A and dye B in the presence of TiO(2) colloids are longer and shorter than those obtained in the absence of TiO(2) colloids, respectively. ESR measurements demonstrate that the electron transfer efficiency from (1)dye B* to the conduction band of TiO(2) is much larger than that from (1)dye A* to the conduction band of TiO(2). The different fluorescence behavior of dye A and dye B can be intepreted in terms of whether phi(Tr,nr)(0)-phi(Tr,nr) (the reduction of the quantum yield for radiationless transition in the excited singlet state (1)dye* caused by the TiO(2) colloids) is larger or smaller than phi(ET) (the quantum yield of electron transfer from (1)dye* to the conduction band of TiO(2) colloids).  相似文献   

15.
The DNA fragment detection focusing technique has further enhanced the sensitivity and information of DNA targets. The DNA fragment detection method was established by capillary electrophoresis with laser‐induced fluorescence detection and restriction endonuclease chromatographic fingerprinting (CE‐LIF‐REF) in our experiment. The silica capillary column was coated with short linear polyarclarylamide (SLPA) using nongel sieving technology. The excision product of various restricted enzymes of DNA fragments was obtained by REF with the molecular biology software Primer Premier 5. The PBR322/BsuRI DNA marker was used to establish the optimization method. The markers were focused electrophoretically and detected by CE‐LIF. The results demonstrate that the CE‐LIF‐REF with SLPA can improve separation, sensitivity and speed of analysis. This technique may be applied to analysis of the excision product of various restricted enzymes of prokaryotic plasmid (pIRES2), eukaryote plasmid (pcDNA3.1) and the PCR product of codon 248 region of gastric cancer tissue. The results suggest that this method could very sensitively separate the excision products of various restricted enzymes at a much better resolution than the traditional agarose electrophoresis. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
17.
This paper describes the analysis of large DNA fragments at pH > 10.0 by capillary electrophoresis (CE) in the presence of electroosmotic flow (EOF) using hydroxyethylcellulose (HEC) solution. HEC solution in the anodic reservoir enters the capillaries filled with high-pH buffer by EOF after sample injection. With respect to resolution, sensitivity, and speed, separation conducted under discontinuous conditions (different pH values of HEC solutions and buffer filling the capillary) is appropriate. Using HEC solution at concentrations higher than its entanglement threshold ensures a good separation of large DNA fragments in the presence of EOF at high pH. In addition to pH and HEC, the electrolyte species, dimethylamine, methylamine, and piperidine, play different roles in determining the resolution. The separation of DNA fragments ranging in size from 5 to 40 kilo base pairs was completed in 6 min using 1.5% HEC prepared in 20 mM methylamine-borate, pH 12.0, and the capillary filled with 40 mM dimethylamine-borate, pH 10.0. In comparison, this method allows faster separations of large DNA fragments compared with that conducted in the absence of EOF using dilute HEC solutions.  相似文献   

18.
This study is aimed at establishing optimal conditions for the use of 2,2'-[1,3-propanediylbis[(dimethyliminio)-3,1-propanediyl-1(4H)-pyridinyl-4-ylidenemethy-lidyne]]bis[3-methyl]-tetraiodide (BOBO-1) as a fluorescent probe in the characterization of lipid/DNA complexes (lipoplexes). The fluorescence spectra, anisotropy, fluorescence lifetimes and fluorescence quantum yields of this dimeric cyanine dye in plasmid DNA (2694 base pairs) with and without cationic liposomes (1,2-dioleoyl-3-trimethylammonium-propane [DOTAP]), are reported. The photophysical behavior of the dye in the absence of lipid was studied for several dye/DNA ratios using both supercoiled and relaxed plasmid. At dye/DNA ratios (d/b) below 0.01 the fluorescence intensity increases linearly, whereas lifetime and anisotropy values of the dye are constant (tau approximately 2.5 ns and = 0.20). By agarose gel electrophoresis it was verified that up to d/b = 0.01 DNA conformation is not considerably modified, whereas for d/b = 0.05-0.06 a single heavy band appears on the gel. For these and higher dye/DNA ratios the fluorescence intensity, anisotropy and average lifetime values decrease with an increase in BOBO-1 concentration. When cationic liposomes are added to the BOBO-1/DNA complex, an additional effect is noticed: The difference in the environment probed by BOBO-1 bound to DNA leads to a decrease in quantum yield and average lifetime values, and a redshift is apparent in the emission spectrum. For fluorescence measurements including energy transfer (FRET), a d/b ratio of 0.01 seems to be adequate because no considerable change on DNA conformation is detected, a considerable fluorescent signal is still measured after lipoplex formation, and energy migration is not efficient.  相似文献   

19.
Highly selective and sensitive assays are required for detection and quantitation of the small masses of DNA typically encountered in clinical and forensic settings. High detection sensitivity is achieved using fluorescent labeling dyes and detection techniques such as spectrofluorometers, microplate readers and cytometers. This work describes the use of a laser-induced fluorescence (LIF) detector in conjunction with a commercial capillary electrophoresis instrument for DNA quantitation. PicoGreen and YO-PRO-1, two fluorescent DNA labeling dyes, were used to assess the potential of the system for routine DNA analysis. Linearity, reproducibility, sensitivity, limits of detection and quantitation, and sample stability were examined for the two assays. The LIF detector response was found to be linear (R2 > 0.999) and reproducible (RSD < 9%) in both cases. The PicoGreen assay displayed lower limits of detection and quantitation (20 pg and 60 pg, respectively) than the YO-PRO-1 assay (60 pg and 260 pg, respectively). Although a small variation in fluorescence was observed for the DNA/dye complexes over time, quantitation was not significantly affected and the solutions were found to be relatively stable for 80 min. The advantages of the technique include a 4- to 40-fold reduction in the volume of sample required compared to traditional assays, a 2- to 20-fold reduction in the volume of reagents consumed, fast and automated analysis, and low cost (no specific instrumentation required).  相似文献   

20.
A faster and more convenient method is required for the detection of recombinant erythropoietin (Epo) in human body fluids. In the present study we wanted to elucidate the principal suitability of immunoaffinity capillary electrophoresis (CE) in this respect. CE offers itself as a high-speed, high-throughput technique provided a suitable affinity reagent is available. We chose monoclonal antibody 5F12 from Amgen which binds to a conformation-independent epitope in the N-terminal region of the human Epo protein. For CE with laser-induced fluorescence detection it was necessary to produce fluorescently labelled antibody with one single antigen binding site. Monomeric antigen-binding fragments (Fab) were obtained by site-selective cleavage of the pure antibody and labelled with the fluorescent dye, Alexa Fluor 488. The mixture of labelled isomers was partially resolved by ion exchange HPLC and isoelectric focusing. The fluorescent Fab could be used to detect erythropoietin by immunoaffinity capillary isoelectric focusing and zone capillary electrophoresis via its antigen complex.Abbreviations BGE background electrolyte - CE capillary electrophoresis - Epo Erythropoietin - Fab antigen-binding fragment - FITC fluorescein isothiocyanate - IEF isoelectric focusing - mAb monoclonal antibody - PBS phosphate-buffered saline - rHuEpo recombinant human erythropoietin - scFv (recombinant) single chain variable fragment - SDS-PAGE denaturing polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate - ECL enzyme-coupled chemoluminescence - vH variable domain - cH1–3 constant domains of an antibody's heavy chain  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号