首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Measurements of group delay were made extracellularly from spiral ganglion cells in the 3.7 to 5.0-mm region of the guinea pig cochlea, using sinusoidally amplitude modulated tones with constant modulating frequency (100 Hz) and depth of modulation (0.19). Threshold cochlear tuning was accompanied by frequency-dependent group delays. The group delay on the low-frequency tail was independent of carrier frequency; the interunit variation was 0.28-1.28 ms. The difference in group delay between CF and the low-frequency tail decreased as the CF threshold increased (-0.09 +/- 0.02 ms per 10 dB, beginning at 0.62 +/- 0.07 ms at 0 dB SPL). The group delay decreased above CF; at the units' maximum frequency it was less than the low-frequency tail value, and was sometimes negative. Following arterial injections of furosemide the CF threshold increased and the group delay peak decreased; the low-frequency tail was unaffected. The group delay decreased with increasing intensity; the reduction near and above CF was not only larger than that on the low-frequency tail, but also the change at 5-10 dB above threshold was far greater than expected from the Q10dB of the suprathreshold iso-rate tuning curves. A minimum-phase analysis suggested that the group delay response above CF, together with its nonlinear behavior, can be accounted for by a high-frequency, level-independent, amplitude plateau, in combination with the single unit, amplitude nonlinearity which is known to exist above CF.  相似文献   

2.
Equal-loudness functions describe relationships between the frequencies of sounds and their perceived loudness. This pilot study investigated the possibility of deriving equal-loudness contours based on the assumption that sounds of equal perceived loudness elicit equal reaction times (RTs). During a psychoacoustic underwater hearing study, the responses of two young female harbor seals to tonal signals between 0.125 and 100 kHz were filmed. Frame-by-frame analysis was used to quantify RT (the time between the onset of the sound stimulus and the onset of movement of the seal away from the listening station). Near-threshold equal-latency contours, as surrogates for equal-loudness contours, were estimated from RT-level functions fitted to mean RT data. The closer the received sound pressure level was to the 50% detection hearing threshold, the more slowly the animals reacted to the signal (RT range: 188-982 ms). Equal-latency contours were calculated relative to the RTs shown by each seal at sound levels of 0, 10, and 20 dB above the detection threshold at 1 kHz. Fifty percent detection thresholds are obtained with well-trained subjects actively listening for faint familiar sounds. When calculating audibility ranges of sounds for harbor seals in nature, it may be appropriate to consider levels 20 dB above this threshold.  相似文献   

3.
Recently, endolaryngeal sonography at frequencies ranging from 10 to 30 MHz has been found to be useful in diagnosing diseases of the vocal folds (VFs). However, image resolution can be further improved by ultrasound at higher frequencies, necessitating the measurement of high-frequency acoustic properties of VF tissue. The ultrasonic parameters of integrated backscatter, sound velocity, and frequency-dependent attenuation coefficient were measured in both the lamina propria (LP) and vocalis muscle (VM) of human VFs using a 47 MHz high-frequency ultrasonic transducer. The integrated backscatter was -173.44+/-6.14 (mean+/-s.d.) and -195.13+/-3.58 dB in the LP and VM, respectively, the sound velocity was 1667.68+/-44.9 and 1595.07+/-39.33 ms, and the attenuation coefficient at 47 MHz was 8.28+/-1.72 and 7.17+/-1.30 dBmm. The difference between these ultrasonic parameters may be attributed to variations in the structure and fiber concentrations in VF tissue. These results could serve as a useful clinical reference for the further development of high-frequency ultrasound devices for endolarynx sonography applications.  相似文献   

4.
Using a 4-echo spin-echo sequence, cerebral T2 was measured in specific anatomic regions in eleven healthy newborn infants, whose gestational plus postnatal ages (GPAs) lay between 37 and 42 weeks. For a region in the pons, T2 was 141+/-9 ms (mean +/- standard deviation), and no significant dependence upon GPA was seen. In the thalamus mean T2 was 136+/-13 ms, and T2 demonstrated a significant negative linear dependence upon age (r = 0.690; p < 0.02). In periventricular and frontal regions, mean T2 were 217+/-33, and 228+/-32 ms respectively, and more marked negative linear correlations with age were observed (r = 0.833; p < 0.001 and r = 0.722; p < 0.02). For these regions, the rate of T2 decrease with age appeared to be related to known patterns of myelination. For the parietal region studied, mean T2 was 204+/-34 ms, no significant dependence upon GPA being seen. T2 shows promise as an objective measure of cerebral development in the perinatal period.  相似文献   

5.
Spatial impression perceived in a listening space comprises at least two components: one is auditory (apparent) source width (ASW) and the other is listener envelopment (LEV). Both ASW and LEV are affected not only by temporal but also by spatial structures of reflections. It has been clarified that ASW for symphony music is significantly affected by low-frequency components of source signals and reflections, but not by their high-frequency components. The objective of this work is to investigate whether LEV is affected by the frequency characteristics of source signals and reverberation sounds, which are known to contribute to the creation of LEV. In this study, three experiments were performed to clarify the effects of reverberation time (RT) and its frequency characteristics on LEV. In contrast to the case of ASW, the experimental results show that RTs both at high and low frequencies affect LEV.  相似文献   

6.
Functional magnetic resonance imaging (fMRI) was used to measure the effects of acute hypoglycemia caused by passive sensory stimulation on brain activation. Visual stimulation was used to generate blood-oxygen-level-dependent (BOLD) contrast, which was monitored during hyperinsulinemic hypoglycemic and euglycemic clamp studies. Hypoglycemia (50 +/- 1 mg glucose/dl) decreased the fMRI signal relative to euglycemia in 10 healthy human subjects: the fractional signal change was reduced by 28 +/- 12% (P < .05). These changes were reversed when euglycemia was restored. These data provide a basis of comparison for studies that quantify hypoglycemia-related changes in fMRI activity during cognitive tasks based on visual stimuli and demonstrate that variations in blood glucose levels may modulate BOLD signals in the healthy brain.  相似文献   

7.
Two experiments explored how frequency content impacts sound localization for sounds containing reverberant energy. Virtual sound sources from thirteen lateral angles and four distances were simulated in the frontal horizontal plane using binaural room impulse responses measured in an everyday office. Experiment 1 compared localization judgments for one-octave-wide noise centered at either 750 Hz (low) or 6000 Hz (high). For both band-limited noises, perceived lateral angle varied monotonically with source angle. For frontal sources, perceived locations were similar for low- and high-frequency noise; however, for lateral sources, localization was less accurate for low-frequency noise than for high-frequency noise. With increasing source distance, judgments of both noises became more biased toward the median plane, an effect that was greater for low-frequency noise than for high-frequency noise. In Experiment 2, simultaneous presentation of low- and high-frequency noises yielded performance that was less accurate than that for high-frequency noise, but equal to or better than for low-frequency noise. Results suggest that listeners perceptually weight low-frequency information heavily, even in reverberant conditions where high-frequency stimuli are localized more accurately. These findings show that listeners do not always optimally adjust how localization cues are integrated over frequency in reverberant settings.  相似文献   

8.
Our previous study suggested that the functional magnetic resonance imaging MRI (fMRI) COSLOF Index (CI) could be used as a quantitative biomarker for Alzheimer's disease (AD). The fMRI CI was lowest in the AD group (0.13+/-0.10), followed by the mild cognitive impairment (MCI) group (0.20+/-0.05) and the control group (0.34+/-0.09). The current study continues an investigation into which of the following two factors has a dominant role in determining the CI: the signal-to-noise ratio (SNR) or the phase shift of spontaneous low-frequency (SLF) components. By using a theoretical model for SLF components, we demonstrated that the normalized CI does not depend on the SNR of the SLF components. Further analysis shows that by taking the ratio of the cross-correlation coefficient to the maximum-shifted cross-correlation coefficient, the SNR factor can be canceled. Therefore, the determination of the phase shift index (PSI) method is independent of the SNR, and the PSI provides an accurate measure of the phase shift between SLF components. By applying this PSI method to the control, MCI and AD groups of subjects, experimental results demonstrated that the PSI was highest in the AD group (72.6+/-11.3 degrees ), followed by the MCI group (58.6+/-5.7 degrees ) and, finally, the control group (40.6+/-8.4 degrees ). These results suggest that the larger is the PSI value, the more asynchrony exists between SLF components.  相似文献   

9.
Comparison of multi-echo spiral and echo planar imaging in functional MRI   总被引:2,自引:0,他引:2  
Multi-echo spiral and echo-planar (EPI) imaging sequences were compared in functional imaging experiments at 3 Tesla. Both sequence types allow calculation of the effective transversal relaxation time T(2)* and the initial signal intensity I(0). These parameters can be used in evaluation of the functional signal with respect to inflow effects and other vascular sources. Prior to functional magnetic resonance imaging (fMRI) experiments T(2)* measurements in the human brain were performed with single- and multi-echo FLASH (fast low angle shot) and compared with EPI und spiral imaging sequences. These experiments resulted in T(2)* values ranging from 42.9 to 53.8 ms in a ROI including white and gray matter and CSF in a prefrontal brain region, and allowed validation of the quantitative results of the fast single-shot techniques. In functional experiments with motor stimulation mean absolute T(2)* increases during stimulation of 1.1 +/- 0.6 ms and 1.4 +/- 0.9 ms were found with multi-echo EPI and spiral imaging, respectively, averaged over the activated pixels. In addition, absolute T(2)* values and the size of activated areas obtained with both sequences are comparable. In these investigations spiral imaging allowed higher spatial resolution due to more efficient use of available gradient performance.  相似文献   

10.
Metabolite concentrations in normal adult brains and in gliomas were quantitatively analyzed by in vivo proton magnetic resonance spectroscopy (MRS) using the fully relaxed water signal as an internal standard. Between January 1998 and October 2001, 28 healthy volunteers and 18 patients with gliomas were examined by in vivo proton MRS. Single voxel spectra were acquired using the point-resolved spectroscopic pulse sequence with a 1.5-T scanner (TR/TE/Ave = 3000 ms/30 ms/64). The calculated concentrations of N-acetyl-aspartate (NAA), creatine (Cre), choline (Cho), and water (H2O) in the normal hemispheric white matter were 23.59 +/- 2.62 mM (mean +/- SD), 13.06 +/- 1.8 mM, 4.28 +/- 0.8 mM, and 47280.96 +/- 5414.85 mM, respectively. The metabolite concentrations were not necessarily uniform in different parts of the brain. The concentrations of NAA and Cre decreased in all gliomas (p < 0.001). The NAA/Cho and NAA/H2O ratios can distinguish the normal brain from gliomas, and low-grade astrocytoma from high-grade group (p < 0.001). The concentration of taurine (Tau) in medulloblastomas was 29.64 +/- 5.76 mM. This is the first quantitative analysis of Tau in medulloblastoma in vivo and confirms earlier in vitro findings.  相似文献   

11.
This paper describes the high-frequency echolocation signals from free-ranging Yangtze finless porpoise in the Tian-e-zhou Baiji National Natural Reserve in Hubei Province, China. Signal analysis showed that the Yangtze finless porpoise clicks are typical high-frequency narrow-band (relative width of the frequency spectrum Q = 6.6 +/- 1.56, N = 548) ultrasonic pulses. The peak frequencies of the typical clicks range from 87 to 145 kHz with an average of 125 +/- 6.92 kHz. The durations range from 30 to 122 micros with an average of 68 +/- 14.12, as. The characteristics of the signals are similar to those of other members of the Phocoenidae as well as the distantly related delphinids, Cephalorhynchus spp. Comparison of these signals to those of the baiji (Lipotes vexillifer), who occupies habitat similar to that of the Yangtze finless porpoise, showed that the peak frequencies of clicks produced by the Yangtze finless porpoise are remarkably higher than those produced by the baiji. Difference in peak frequency between the two species is probably linked to the different size of preferred prey fish. Clear double-pulse and multi-pulse reverberation structures of clicks are noticed, and there is no indication of any low-frequency (< 70 kHz) components during the recording period.  相似文献   

12.
Metabolite concentrations in normal adult brains and in gliomas were quantitatively analyzed by in vivo proton magnetic resonance spectroscopy (MRS) using the fully relaxed water signal as an internal standard. Between January 1998 and October 2001, 28 healthy volunteers and 18 patients with gliomas were examined by in vivo proton MRS. Single-voxel spectra were acquired using the point-resolved spectroscopic (PRESS) pulse sequence with a 1.5 T scanner (TR/TE/Ave = 3000 ms/30 ms/64). The calculated concentrations of N-acetyl-aspartate (NAA), creatine (Cre), choline (Cho), and water(H(2)O) in the normal hemispheric white matter were 23.59 +/- 2.62 mM (mean +/- SD), 13.06 +/- 1.8 mM, 4.28 +/- 0.8 mM, and 47280.96 +/- 5414.85 mM, respectively. The metabolite concentrations were not necessarily uniform in different parts of the brain. The concentrations of NAA and Cre decreased in all gliomas (p < 0.001). The NAA/Cho and NAA/H(2)O ratios can distinguish the normal brain from gliomas and low-grade from high-grade astrocytoma (p < 0.001). The concentration of taurine (Tau) in medulloblastomas was 29.64 +/- 5.76 mM. This is the first quantitative analysis of Tau in medulloblastoma in vivo and confirms earlier in vitro findings.  相似文献   

13.
Age and stimulus rise time (RT) effects on response latency were investigated for inferior colliculus (IC) neurons in young-adult and old CBA mice. Single-unit responses were recorded to unmodulated and sinusoidal amplitude modulated (SAM) broadband noise carriers, presented at 35 to 80 dB SPL. Data from 63 young-adult and 76 old phasic units were analyzed to identify the time interval between stimulus onset and driven-response onset (latency). When controlling for stimulus sound level and AM frequency, significant age-related changes in latency were identified. Absolute latency decreased with age at all stimulus AM frequencies, significantly so for equivalent rise times (RT) < or = 12.5 ms. The linear correlation of latency with AM stimulus RT was significant for both young-adult and old units, and increased significantly with age. It is likely that both the decrease in absolute latency and the increase in latency/RT correlation with age are consistent with a reduction of inhibitory drive with age in the IC. These latency changes will result in age-related timing variations in brainstem responses to stimulus onsets, and therefore affect the encoding of complex sounds.  相似文献   

14.
The ability to localize a click train in the frontal-horizontal plane was measured in quiet and in the presence of a white-noise masker. The experiment tested the effects of signal frequency, signal-to-noise ratio (S/N), and masker location. Clicks were low-pass filtered at 11 kHz in the broadband condition, low-pass filtered at 1.6 kHz in the low-pass condition, and bandpass filtered between 1.6 and 11 kHz in the high-pass condition. The masker was presented at either -90, 0, or +90 deg azimuth. Six signal-to-noise ratios were used, ranging from -9 to +18 dB. Results obtained with four normal-hearing listeners show that (1) for all masker locations and filtering conditions, localization accuracy remains unaffected by noise until 0-6 dB S/N and decreases at more adverse signal-to-noise ratios, (2) for all filtering conditions and at low signal-to-noise ratios, the effect of noise is greater when noise is presented at +/- 90 deg azimuth than at 0 deg azimuth, (3) the effect of noise is similar for all filtering conditions when noise is presented at 0 deg azimuth, and (4) when noise is presented at +/- 90 deg azimuth, the effect of noise is similar for the broadband and high-pass conditions, but greater for the low-pass condition. These results suggest that the low- and high-frequency cues used to localize sounds are equally affected when noise is presented at 0 deg azimuth. However, low-frequency cues are less resistant to noise than high-frequency cues when noise is presented at +/- 90 deg azimuth. When both low- and high-frequency cues are available, listeners base their decision on the cues providing the most accurate estimation of the direction of the sound source (high-frequency cues). Parallel measures of click detectability suggest that the poorer localization accuracy observed when noise is at +/- 90 deg azimuth may be caused by a reduction in the detectability of the signal at the ear ipsilateral to the noise.  相似文献   

15.
In this study, we combined the advantages of a fast multi-slice spiral imaging approach with a multiple gradient-echo sampling scheme at high magnetic field strength to improve quantification of BOLD and inflow effects and to estimate T2* relaxation times in functional brain imaging. Eight echoes are collected with echo time (TE) ranging from 5 to 180 ms. Acquisition time per slice and echo time is 25 ms for a nominal resolution of 4 x 4 x 4 mm3. Evaluation of parameter images during rest and stimulation yields no significant activation on the inflow sensitive spin-density images (rho or I0-maps) whereas clear activation patterns in primary human motor cortex (M1) and supplementary motor area (SMA) are detected on BOLD sensitive T2*-maps. The calculation of relaxation times and rates of the activated areas over all subjects yields an average T2* +/- standard deviation (SD) of 46.1+/-4.5 ms (R2* of 21.8+/-2.2 s(-1)) and an average increase (deltaT2* +/- SD) of 0.93+/-0.47 ms (deltaR2* of -0.4+/-0.14 s(-1)). Our findings demonstrate the usefulness of a multiple gradient echo data acquisition approach in separating various vascular contributions to brain activation in fMRI.  相似文献   

16.
In this study the influence of a large variety of imaging parameters on the signal increase (DeltaS) and the contrast-to-noise ratio (CNR) of functional magnetic resonance imaging experiments was determined using FLASH imaging at 2 T. During visual stimulation of the brain we detected significant variations of DeltaS as a function of the echo time (30 ms: 3.5 +/- 0.4%, 60 ms: 6.8 +/- 0.7%), slice thickness (2.5 mm: 6.8 +/- 0.7%, 10.0 mm: 3.3 +/- 0.3%), and pixel size (4.69 mm: 3.1 +/- 0.3%, 1.88 mm: 5.9 +/- 0.5%). Significant changes of DeltaS with flip angle occurred for TE = 20 ms (15 degrees : 2.1 +/- 0.2%, 60 degrees : 3.2 +/- 0.5%). At TE = 30 ms there still was a slight increase (15 degrees : 3.0 +/- 0.4%, 60 degrees : 3.8 +/- 0.5%), while at TE = 50 ms no changes of DeltaS could be detected with flip angle. Furthermore, DeltaS decreased with the use of first-order flow and motion compensation (off: 5.8 +/- 0.6%, on: 4.5 +/- 0.5%). The purpose of this study was to identify the optimal imaging parameters for blood oxygenation level dependent contrast using FLASH imaging at 2 T. Relying on a time normalized contrast-to-noise ratio (CNR(n)) we found the following parameters to be optimal: TE approximately 40-50 ms, a rather low spatial resolution (slice thickness approximately 5.0-7.5 mm, pixel size approximately 2.3-4.6 mm, matrix size 64 x 48), and flip angles lower than 30 degrees. Flow compensation should not be applied, and a rather low bandwidth of approximately 2.5 kHz is favorable, as it yields a superior signal-to-noise ratio.  相似文献   

17.
The effect on gap detectability of varying noise fall time (FT) and rise time (RT) of the gap boundary ramps was examined in mice using reflex modification audiometry, measuring inhibition of acoustic startle reflexes by variously shaped gaps just preceding reflex expression. In experiment 1 (n = 12) inhibition increased up to near-asymptotic values with longer FT (0, 1, 2, 3, 5, or 10 ms) and QT (quiet time, 0 to 13 ms), with a 2:1 trade-off between FT and QT. In experiment 2 (n = 24) inhibition increased for any RT above 0 ms (2, 3, 5, or 7 ms) if QT= 1 ms, but diminished with increased RT when QT = 3 or 8 ms. Enhanced detectability for subthreshold gaps by longer ramps results from their extending the apparent gap duration. The negative effect of increased RT for threshold gaps suggests the importance for gap detection of the stronger neural responses to sharp edges at the end of the gap shown previously in the mouse inferior colliculus. These effects are specific to gaps: inhibition for fixed (70-dB SPL) or varied level pulses (30 to 60 dB) was unaffected by varying the ramped edges (experiments 3 and 4, n = 9).  相似文献   

18.
The magnetic resonance (MR) properties of the rat spinal cord were characterized at the T9 level with ex vivo experiments performed at 9.4 T. The inherent endogenous contrast parameters, proton density (PD), longitudinal and transverse relaxation times T1 and T2, and magnetization transfer ratio (MTR) were measured separately for the grey matter (GM) and white matter (WM). Analysis of the measurements indicated that these tissues have statistically different proton densities with means PD(GM)=54.8+/-2.5% versus PD(WM)=45.2+/-2.4%, and different T1 values with means T1GM=2.28+/-0.23 s versus T1WM=1.97+/-0.21 s. The corresponding values for T2 were T2GM=31.8+/-4.9 ms versus T2WM=29.5+/-4.9 ms, and the difference was insignificant. The difference between MTR(GM)=31.2+/-6.1% and MTR(WM)=33.1+/-5.9% was also insignificant. These results collectively suggest that PD and T1 are the two most important parameters that determine the observed contrast on spinal cord images acquired at 9.4 T. Therefore, in MR imaging studies of spinal cord at this field strength, these parameters need to be considered not only in optimizing the protocols but also in signal enhancement strategies involving exogenous contrast agents.  相似文献   

19.
Sound source localization on the horizontal plane is primarily determined by interaural time differences (ITDs) for low-frequency stimuli and by interaural level differences (ILDs) for high-frequency stimuli, but ITDs in high-frequency complex stimuli can also be used for localization. Of interest here is the relationship between the processing of high-frequency ITDs and that of low-frequency ITDs and high-frequency ILDs. A few similarities in human performance with high- and low-frequency ITDs have been taken as evidence for similar ITD processing across frequency regions. However, such similarities, unless accompanied by differences between ITD and ILD performance on the same measure, could potentially reflect processing attributes common to both ITDs and ILDs rather than to ITDs only. In the present experiment, both learning and variability patterns in human discrimination of ITDs in high-frequency amplitude-modulated tones were examined and compared to previously obtained data with low-frequency ITDs and high-frequency ILDs. Both patterns for high-frequency ITDs were more similar to those for low-frequency ITDs than for high-frequency ILDs. These results thus add to the evidence supporting similar ITD processing across frequency regions, and further suggest that both high- and low-frequency ITD processing is less modifiable and more noisy than ILD processing.  相似文献   

20.
Takiguchi Y  Liu Y  Ohtsubo J 《Optics letters》1998,23(17):1369-1371
Low-frequency fluctuations in semiconductor lasers with optical feedback are investigated when high-frequency modulation is applied to an injection current. Synchronization of the laser output power with the modulation within +/-3 MHz centered at the frequency corresponding to the external cavity mode was observed. However, for modulation of the detuned frequency from the external cavity mode, low-frequency fluctuations were induced in the laser output power, and these fluctuations were observed within a range of modulation of approximately +/-100 MHz at the center frequency of the external cavity mode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号