首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We report a beam-shaping technique that reconfigures the beams to improve the beam quality and enhance the power density for a ten-array high-power laser-diode stack by using two optical rectangular cubes and two stripe-mirror plates. The reshaped beam has threefold improvement in beam quality, and its power density is effectively enhanced. On the basis of this technique, we focus the beam of the high-power laser-diode stack to effectively end pump a high-power fiber laser.  相似文献   

2.
In this work, the simulation of the 980 nm InGaAs intra-cavity-contacted oxide-confined vertical-cavity surface-emitting lasers (ICOC VCSELs) with separated triplets of quantum wells (STQW) is presented. We analyze the thermal, electrical and optical properties of such devices. Results of simulations show the larger optical power efficiency and higher modulation bandwidth for devices with included STQW.  相似文献   

3.
TPV系统热辐射发电模块数值分析   总被引:1,自引:0,他引:1  
茆磊  叶宏  程倩 《计算物理》2008,25(4):450-456
建立TPV系统热辐射发电模块的数理模型,通过数值模拟获得SiC辐射器分别配合GaSb和Si电池所构成的TPV系统的输出伏安特性曲线;以GaSb电池为例,分别分析SiC辐射器温度和电池温度对系统性能的影响,得出如下结论:辐射器温度升高,系统输出电能密度迅速增大,电池效率稳步提高,辐射器温度从1400 K升至1900 K,系统输出电能密度从0.67 W·cm-2增至5.43 W·cm-2,电池效率从16.3%上升到24.8%;电池温度升高导致系统性能下降,电池温度每升高10 K,系统输出电能密度减少约0.15 W·cm-2,电池效率也大幅下降.最后讨论与GaSb匹配的一种选择性辐射器的辐射能量分布情况,与SiC辐射器相比,选择性辐射器可以显著减少辐射能量中的不可用部分,从而有效提高系统的性能与稳定性.  相似文献   

4.
This paper elucidates the energy transfer and conversion processes in near-field thermophotovoltaic (TPV) systems, considering local radiation absorption and photocurrent generation in the TPV cell. Radiation heat transfer in a multilayered structure is modeled using the fluctuation-dissipation theorem, and the electric current generation is evaluated based on the photogeneration and recombination of electron-hole pairs in different regions of the TPV cell. The effects of near-field radiation on the photon penetration depth, photocurrent generation, and quantum efficiency are examined in the spectral region of interest. The detailed analysis performed in the present work demonstrates that, while the near-field operation can enhance the power throughput, the conversion efficiency is not much improved and may even be reduced. Subsequently, a modified design of near-field TPV systems is proposed to improve the efficiency.  相似文献   

5.
Yi Li 《中国物理 B》2022,31(9):97301-097301
The rapid development of two-dimensional (2D) materials offers new opportunities for 2D ultra-thin excitonic solar cells (XSCs). The construction of van der Waals heterostructure (vdWH) is a recognised and effective method of integrating the properties of single-layer 2D materials, creating particularly superior performance. Here, the prospects of h-BP/h-BAs vdW heterostructures in 2D excitonic solar cells are assessed. We systematically investigate the electronic properties and optical properties of heterogeneous structures by using the density functional theory (DFT) and first-principles calculations. The results indicate that the heterogeneous structure has good optoelectronic properties, such as a suitable direct bandgap and excellent optical absorption properties. The calculation of the phonon spectrum also confirms the well-defined kinetic stability of the heterstructure. We design the heterogeneous structure as a model for solar cells, and calculate its solar cell power conversion efficiency which reaches up to 16.51% and is higher than the highest efficiency reported in organic solar cells (11.7%). Our work illustrates the potential of h-BP/h-BAs heterostructure as a candidate for high-efficiency 2D excitonic solar cells.  相似文献   

6.
有机光伏电池物理性能的模拟   总被引:5,自引:0,他引:5       下载免费PDF全文
封伟  高中扩 《物理学报》2008,57(4):2567-2573
在分析有机聚合物光伏器件物理工作过程的基础上,依据光学原理和扩散理论建立了非相干光吸收模型和激子传输模型. 模拟了限制光伏效率的光学吸收和激子扩散两个主要过程,获得了薄膜厚度与光学吸收、转换效率之间的函数关系,为增强有机薄膜的光学吸收、激子分离与传输并获得高转换效率的有机光伏电池奠定理论基础. 关键词: 有机光伏电池 光学吸收 激子扩散 模拟  相似文献   

7.
Lead halide perovskite solar cells with planar heterojunction configuration have recently attracted tremendous attention because of their excellent power conversion efficiencies. The modulation of optical absorption by using an optical spacer layer is a unique method to enhance the device efficiency. Here, we demonstrate the application of thin ZnO layer that act as an optical spacer that enhance the power conversion efficiency perovskite devices from 8.92% to 10.7%, which is mainly due to increment in short‐circuit current density by 16% compared to the reference solar cell. The simulation data revealed that ZnO acts as an optical spacer layer that shifts length (average) of electric field |E|2 distribution from 500 nm to 750 nm wavelength is 25 nm in the perovskite layer. Which represents that exciton generation region is moved to near the hole transport layer that enhances the exciton dissociation efficiency and device efficiency.  相似文献   

8.
Electrochromic (EC) devices, capable of modulating their optical transmittance by charge insertion/extraction, were produced by laminating films comprised of nanoporous W oxide and Ni–V oxide by a polymer electrolyte and having this three-layer stack between transparent conducting In2O3:Sn films backed by polyester foils. 1/f noise in the current (I) was observed when the charged (colored) EC device was discharged via a resistor. The power spectral density S i at fixed frequency scaled as S i  ∼ I 2. Extended color/bleach cycling degraded the optical quality and homogeneity of the device and concomitantly increased the 1/f noise intensity. These initial data indicate that 1/f noise has a potential to serve as a quality measure for EC devices.  相似文献   

9.
We report on the micro-fabrication of diffractive optical elements (DOEs) such as 1D, 2D and concentric grating structures inside the volume of thin silicone films by femtosecond laser direct writing. In addition, we show that such structures can also be integrated into silicone films that act as encapsulation layers of high power light-emitting diodes. The latter strategy opens new possibilities to homogenize and to control the light emitted from such devices.  相似文献   

10.
We fabricated several near-infrared Si laser devices (wavelength ~1300 nm) showing continuous-wave oscillation at room temperature by using a phonon-assisted process induced by dressed photons. Their optical resonators were formed of ridge waveguides with a width of 10 μm and a thickness of 2 μm, with two cleaved facets, and the resonator lengths were 250–1000 μm. The oscillation threshold currents of these Si lasers were 50–60 mA. From near-field and far-field images of the optical radiation pattern, we observed the high directivity which is characteristic of a laser beam. Typical values of the threshold current density for laser oscillation, the ratio of powers in the TE polarization and TM polarization during oscillation, the optical output power at a current of 60 mA, and the external differential quantum efficiency were 1.1–2.0 kA/cm2, 8:1, 50 μW, and 1 %, respectively.  相似文献   

11.
We present an optical model based on Green’s function to investigate the effect of using single-wall carbon nanotube (SWCNT) as anode for infrared quantum dot light-emitting devices (IR QD-LEDs). To the best of our knowledge, there is no report in using SWCNT as anode in IR QD-LEDs. We have studied the emitted power distribution among the different optical modes (external propagating mode (photon outcoupling efficiency), substrate, anode/organics, and surface plasmon modes (SP)), angular intensity distribution, viewing angle effect on the optical characteristics, and the emission spectral characteristics. We have found that the light outcoupling efficiency of IR QD-LEDs based on SWCNT as anode was increased nearly by a factor of 4 relative to that one based on indium-tin oxide (ITO). We also investigated the effect of using different cathode materials on the optical characteristics of IR QD-LEDs.  相似文献   

12.
Boiko Y  Eakin J  Vedrine J  Crawford GP 《Optics letters》2002,27(19):1717-1719
We have developed an optical stack of holographically formed polymer dispersed liquid-crystal (H-PDLC) devices that is fully operational with nonpolarized light sources. The device consists of two H-PDLC transmission gratings separated by a passive polarization rotator that can output a diffracted s-polarized, p-polarized, or s- and p-polarized beam simultaneously.  相似文献   

13.
We applied a VHG-FAC lens in our design in this work to collimate the fast axis and lock the output spectrally. We used a beam shaping technique to improve the beam symmetry and power density of a high power diode laser stack with a stripe mirror plate, a V-Stack mirror and polarization beam combining elements. By this technique, the beam of a high power diode laser stack is effectively coupled into a standard 365 μmcore diameter and a NA = 0.22 fiber. By this technique, compactness, higher efficiency, narrower spectral line width and lower production cost of the diodes are possible.  相似文献   

14.
Stretched silver island multilayers have been investigated for patterned optical polarizers for the wavelength of 800 nm. Submicrometer-thick optical polarizing films are fabricated by stretching periodic multilayers consisting of silver island layers and Pyrex layers at the temperature of 660°C. As the optical anisotropy of the optical polarizing film is lost by heating at a temperature higher than the stretching temperature, the fine non-polarizing areas can be deliberately and easily formed on the optical polarizing film by laser irradiation with high power density. We have successfully formed various non-polarizing areas on the optical polarizing film with a 1 W-class carbon dioxide laser. The demonstrated fabricating techniques of deliberately patterned optical polarizing films should be useful for novel optical computing and sensing devices.  相似文献   

15.
L Sun  KW Yu  X Yang 《Optics letters》2012,37(15):3096-3098
We verify the feasibility of the proposed theoretical strategy for designing the broadband near-zero permittivity (ENZ) metamaterial at optical frequency range with numerical simulations. In addition, the designed broadband ENZ stack is used as meta-atoms to build functional nanophotonic devices with extraordinary properties, including an ultranarrow electromagnetic energy tunneling channel and an ENZ concave focusing lens.  相似文献   

16.
Tunable single-mode fiber-VCSEL using an intracavity polymer microlens   总被引:1,自引:0,他引:1  
We report a tunable, single-mode vertical cavity surface-emitting laser (VCSEL) format suitable for array operation, power scaling, fiber coupling, and operation in isolated environments such as those required by atom optics. The devices are fiber VCSELs, consisting of a semiconductor gain and mirror structure separated from a mirror-coated optical fiber by an air (or vacuum) gap. The gain structure has polymer microlenses fabricated on its surface, of characteristics suitable to focus the oscillating mode on both cavity mirrors, ensuring stable fundamental mode emission and high fiber coupling efficiency. We demonstrate such devices in continuous-wave operation at 1.03 microm at room temperature, with a single-mode tuning range of 13 nm, laser threshold as low as 2.5 mW, and a maximum fiber-coupled output power of 10 mW.  相似文献   

17.
We demonstrate a process for the fabrication and transfer of silicon nanomembranes (Si-NMs) that have been released from their host substrates and redeposited on foreign flexible or flat substrates. The transfer process developed allows intricate photonic devices to be transferred via NMs to a variety of new substrate materials. This allows the transferred devices to benefit from the material properties of both substrate and NM. Our process is designed to transfer and stack large-area photonic devices without compromising their optical performance. The process has been used to transfer large-area unpatterned silicon NMs, in excess of 2.5 cm(2), and photonic devices with intricate device designs containing various fill factors. We have also demonstrated transferred photonic crystal devices that have maintained structural integrity and functionality.  相似文献   

18.
Antireflection film in one-dimensional metallo-dielectric photonic crystals   总被引:3,自引:0,他引:3  
We calculated the transmittance of a one-dimensional (1D) metallo-dielectric photonic crystal (MDPC) in the optical region including the absorption losses in metal layers. The structure consists of five Ag and four GaN layers stacked alternately. When we add an antireflection coating to each end of the stack, the transmittance of the MDPC is increased twice as much and the oscillations in the transmission spectrum are also smoothed out compared with the case without them. The transmittance for oblique incident angles is also increased by the addition of two antireflection layers at the ends of the 1D MDPC.  相似文献   

19.
Single-junction,lattice-mismatched In0.69Ga0.31As thermophotovoltaic(TPV) devices each with a bandgap of 0.6 eV are grown on InP substrate by metal-organic chemical vapour deposition(MOCVD).Compositionally undulating stepgraded InAsyP1-y buffer layers with a lattice mismatch of ~1.2% are used to mitigate the effect of lattice mismatch between the device layers and the InP substrate.With an optimized buffer thickness,the In0.69Ga0.31As active layers grown on the buffer display a high crystal quality with no measurable tetragonal distortion.High-performance single-junction devices are demonstrated,with an open-circuit voltage of 0.215 V and a photovoltaic conversion efficiency of 6.9% at a short-circuit current density of 47.6 mA/cm2,which are measured under the standard solar simulator of air mass 1.5-global(AM 1.5 G).  相似文献   

20.
Xiao-Ping Xie 《中国物理 B》2022,31(10):108801-108801
Perovskite/silicon (Si) tandem solar cells have been recognized as the next-generation photovoltaic technology with efficiency over 30% and low cost. However, the intrinsic instability of traditional three-dimensional (3D) hybrid perovskite seriously hinders the lifetimes of tandem devices. In this work, the quasi-two-dimensional (2D) (BA)2(MA)n-1PbnI3n+1 (n=1, 2, 3, 4, 5) (where MA denotes methylammonium and BA represents butylammonium), with senior stability and wider bandgap, are first used as an absorber of semitransparent top perovskite solar cells (PSCs) to construct a four-terminal (4T) tandem devices with a bottom Si-heterojunction cell. The device model is established by Silvaco Atlas based on experimental parameters. Simulation results show that in the optimized tandem device, the top cell (n=4) obtains a power conversion efficiency (PCE) of 17.39% and the Si bottom cell shows a PCE of 11.44%, thus an overall PCE of 28.83%. Furthermore, by introducing a 90-nm lithium fluoride (LiF) anti-reflection layer to reduce the surface reflection loss, the current density (Jsc) of the top cell is enhanced from 15.56 mA/cm2 to 17.09 mA/cm2, the corresponding PCE reaches 19.05%, and the tandem PCE increases to 30.58%. Simultaneously, in the cases of n=3, 4, and 5, all the tandem PCEs exceed the limiting theoretical efficiency of Si cells. Therefore, the 4T quasi-2D perovskite/Si devices provide a more cost-effective tandem strategy and long-term stability solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号