首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, studies of the temperature dependence for spherulitic growth of PBST copolyester bearing 70 mol% butylene terephthalate units (named as PBST-70) ranged from 70 to 170 °C were first reported based on the Lauritzen–Hoffman secondary nucleation theory. The results showed that maximum spherulitic growth rate of PBST-70 was obtained under crystallization temperature of 90 °C, and more perfect spherulites were formed via increasing isothermal crystallization temperature by POM measurement. The classical regime I → II and regime II → III transitions occurred at the temperatures of 150 and 110 °C, respectively, using the empirical universal values of U* = 6300 J mol?1 and T  = T ? 30 K. Moreover, the effects of isothermal crystallization temperature on crystal lamellar thickness, thermal and tensile properties of PBST-70 were systematically investigated by small angle X-ray scattering, differential scanning calorimeter, and strength tester. The results indicated that the crystal lamellar thickness increased by increasing isothermal crystallization temperature. The endothermic peak shifted to higher temperature and the tensile properties of PBST-70 were enhanced under higher isothermal crystallization temperature.  相似文献   

2.
为了解决废弃塑料引起的“白色污染”问题,世界各国竞相研制开发可生物降解高分子材料,其中,有关聚β羟基丁酸酯[poly(βhydroxybutyrate)(PHB)]的研究尤其活跃.然而,由于商品价格较高,材料本身抗冲击性能较差、加工窗口较窄等限制...  相似文献   

3.
The development of the morphology in poly(vinylidene fluoride)/poly(3‐hydroxybutyrate) (PVDF/PHB) blends upon isothermal and anisothermal crystallization is investigated by time‐resolved small‐ and wide‐angle X‐ray scattering. The components are completely miscible in the melt but crystallize separately; they crystallize stepwise at different temperatures or sequentially with isothermal or anisothermal conditions, respectively. The PVDF crystallizes undisturbed whereas PHB crystallizes in a confined space that is determined by the existing supermolecular structure of the PVDF. The investigations reveal that composition inhomogeneities may initially develop in the remaining melt or in the amorphous phases of the PVDF upon crystallization of that component. The subsequent crystallization of the PHB depends on these heterogeneities and the supermolecular structure of PVDF (dendritically or globularly spherulitic). PHB may form separate spherulites that start to grow from the melt, or it may develop “interlocking spherulites” that start to grow from inside a PVDF spherulite. Occasionally, a large number of PVDF spherulites may be incorporated into PHB interlocking spherulites. The separate PHB spherulites may intrude into the PVDF spherulites upon further growth, which results in “interpenetrating spherulites.” Interlocking and interpenetrating are realized by the growth of separate lamellar stacks (“fibrils”) of the blend components. There is no interlamellar growth. The growth direction of the PHB fibrils follows that of the existing PVDF fibrils. Depending on the distribution of the PHB molecules on the interlamellar and interfibrillar PVDF regions, the lamellar arrangement of the PVDF may contract or expand upon PHB crystallization and the adjacent fibrils of the two components are linked or clearly separated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 974–985, 2004  相似文献   

4.
《先进技术聚合物》2018,29(1):632-640
The nanocompsites of star‐shaped poly(D‐lactide)‐co‐poly(L‐lactide) stereoblock copolymers (s‐PDLA‐PLLA) with two‐dimensional graphene nanosheets (GNSs) were prepared by solution mixing method. Crystallization behaviors were investigated using differential scanning calorimetry, polarized optical microscopy, and wide angle X‐ray diffraction. The results of isothermal crystallization behaviors of the nanocompsites clearly indicated that the GNS could remarkably accelerate the overall crystallization rate of s‐PDLA‐PLLA copolymer. Unique stereocomplex crystallites with melting temperature about 207.0°C formed in isothermal crystallization for all samples. The crystallization temperatures of s‐PDLA‐PLLAs shifted to higher temperatures, and the crystallization peak shapes became sharper with increasing GNS contents. The maximum crystallization temperature of the sample with 3 wt% GNS was about 128.2°C, ie, 15°C higher than pure s‐PDLA‐PLLA. At isothermal crystallization processes, the halftime of crystallization (t0.5) of the sample with 3 wt% GNS decreased to 6.4 minutes from 12.9 minutes of pure s‐PDLA‐PLLA at 160°C.The Avrami exponent n values for the nanocomposites samples were 2.6 to 3.0 indicating the crystallization mechanism with three‐dimensional heterogeneous nucleation and spherulites growth. The morphology and average diameter of spherulites of s‐PDLA‐PLLA with various GNS contents were observed in isothermal crystallization processes by polarized optical microscopy. Spherulite growth rates of samples were evaluated by using combined isothermal and nonisothermal procedures and analyzed by the secondary nucleation theory. The results evidenced that the GNS has acceleration effects on the crystallization of s‐PDLA‐PLLA with good nucleation ability in the s‐PDLA‐PLLA material.  相似文献   

5.
为了解决废弃塑料引起的“白色污染”问题,世界各国竞相研制开发可生物降解高分子材料,其中,有关聚β 羟基丁酸酯[poly(β hydroxybutyrate)(PHB)]的研究尤其活跃.然而,由于商品价格较高,材料本身抗冲击性能较差、加工窗口较窄等限制...  相似文献   

6.
This article deals with the structure, crystallization, morphology, and thermal behavior of poly(p‐phenylene sulfide) (PPS) with low‐molecular mass, probed by DSC, optical, and electron microscopy. The growth rates of spherulites were measured over the temperature range 235–275°C. A regime II–III transition was found at T = 250°C. The regime transition was accompanied by a morphological change from sheaflike structure to classical spherulites. The Avrami equation poorly described the isothermal crystallization of PPS, for the occurrence of mixed growth mechanisms and secondary crystallization, in agreement with the morphology and the thermal behavior. Two melting peaks were detected on DSC curves and attributed to the melting of crystals formed isothermally at Tc by primary and secondary crystallization. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 415–424, 2001  相似文献   

7.
Poly(3‐hydroxybutyrate‐co‐3‐hydroxyhexanoate) (PHB‐HHx) and methoxy poly(ethylene glycol) (MPEG) blends were prepared using melt blending. The single glass transition temperature, Tg, between the Tgs of the two components and the negative χ value indicated that PHB‐HHx and MPEG formed miscible blends over the range of compositions studied. The Gordon–Taylor equation proved that there was an interaction between PHB‐HHx and MPEG in their blends. FTIR supported the presence of hydrogen bonding between the hydroxyl group of MPEG and the carbonyl group of PHB‐HHx. The spherulitic morphology and isothermal crystallization behavior of the miscible PHB‐HHx/MPEG blends were investigated at two crystallization temperatures (70 and 40 °C). At 70 °C, melting MPEG acted as a noncrystalline diluent that reduced the crystallization rate of the blends, while insoluble MPEG particles acted as a nucleating agent at 40 °C, enhancing the crystallization rate of the blends. However, no interspherulitic phase separation was observed at the two crystallization temperatures. The constant value of the Avrami exponent demonstrated that MPEG did not affect the three‐dimensional spherulitic growth mechanism of PHB‐HHx crystals in the blends, although the MPEG phase, such as the melting state or insoluble state, influenced the crystallization rate of the blends. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2852–2863, 2006  相似文献   

8.
陈学思 《高分子科学》2010,28(4):499-507
<正>Hydroxyapatite/poly(L-lactide)(HA/PLLA) nanocomposites were prepared by the solvent mixing method.The isothermal crystallization behavior was studied by differential scanning calorimetry(DSC) and polarized optical microscopy (POM).The results show that the crystallization behavior of HA/PLLA composites was strongly affected by the content of HA and crystallization temperature,and the addition of HA could promote nucleation and enhance the crystallization rate. When isothermal crystallization was carried out at 110℃,the HA/PLLA nanocomposite with 1%HA content crystallized most rapidly among all the composites and the half crystallization time was only 1.0 min.Banded spherulites were observed for the HA/PLLA composites,but no banded spherulites were seen in the crystals of PLLA under the same condition.  相似文献   

9.
The crystallization of poly(vinylidene fluoride) (PVDF)/poly(3‐hydroxybutyrate) (PHB) blends was studied with differential scanning calorimetry, from which the phase diagram was derived. Strong miscibility was underlined by the large negative Flory–Huggins interaction parameter (?0.25). The crystallization of the blend components differed remarkably. Whereas PVDF always crystallized in the surroundings of a homogeneous melt, PHB crystallized in a volume that was confined by the already existing PVDF spherulites, partly in their surroundings and partly inside. Under isothermal conditions, PVDF usually crystallized regularly in three dimensions with predominant quench‐induced athermal nucleation. The Avrami exponent for PVDF dendritic spherulitic growth was, however, distinctly smaller than that for compact growth, and this revealed the two‐dimensional lamellar growth inside. This deviation from ideal Avrami behavior was caused by the development of compositional inhomogeneities as PVDF crystallization proceeded, and this decelerated the kinetics. PHB crystallized three‐dimensionally with mixed thermal and athermal nucleation outside the PVDF spherulites. Inside the PVDF spherulites, PHB crystallization proceeded in a fibrillar fashion with thermal nucleation; the growth front followed the amorphous paths inside the dendritic PVDF spherulites. The crystallization was faster than that in the melt of uncrystallized PVDF. Solid PVDF acts possibly heterogeneously nucleating, accelerating PHB crystallization. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 287–295, 2005  相似文献   

10.
The crystallization behavior of biodegradable poly(butylene succinate) and copolyesters poly(butylene succinate‐co‐propylene succinate)s (PBSPS) was investigated by using 1H NMR, DSC and POM, respectively. Isothermal crystallization kinetics of the polyesters has been analyzed by the Avrami equation. The 2.2‐2.8 range of Avrami exponential n indicated that the crystallization mechanism was a heterogeneous nucleation with spherical growth geometry in the crystallization process of polyesters. Multiple melting peaks were observed during heating process after isothermal crystallization, and it could be explained by the melting and recrystallization model. PBSPS was identified to have the same crystal structure with that of PBS by using wide‐angle X‐ray diffraction (WAXD), suggesting that only BS unit crystallized while the PS unit was in an amorphous state. The crystal structure of polyesters was not affected by the crystallization temperatures, too. Besides the normal extinction crosses under the POM, the double‐banded extinction patterns with periodic distance along the radial direction were also observed in the spherulites of PBS and PBSPS. The morphology of spherulites strongly depended on the crystallization temperature. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 420–428, 2007  相似文献   

11.
Amphiphilic biodegradable poly(CL-b-PEG-b-CL) triblock copolymers have been successfully prepared by the ring-opening polymerization of ε-caprolactone (CL) employing yttrium tris(2,6-di-tert-butyl-4-methylphenolate) [Y(DBMP)3] as catalyst and double-hydroxyl capped PEGs (DHPEG) as macro-initiator. The triblock architecture, molecular weight, thermal and crystallization properties of the copolymers were characterized by NMR spectra, SEC, DSC and WAXD analyses. The isothermal crystallization behavior of the copolymers was investigated by POM analysis in detail, which is greatly influenced by the length of PCL and PEG blocks. On the POM micrograph of PEG10,000-(PCL8600)2, a unique morphology of concentric spherulites was observed due to the sequent crystallization of the PCL and PEG blocks.  相似文献   

12.
The crystallization behavior of poly(e-caprolactone)/poly(ethylene glycol) (PCL/PEG) blend was investigated by differential scanning calorimetry (DSC) and polarized microscopy (POM). Individual phase transition peaks in the DSC curves for both PEG and PCL in all the polymer blends with different PCL contents were observed. The crystallization and melting peak temperatures of PEG were at 41 and 65°C, respectively; while the crystallization and melting temperatures of PCL located at 28 and 56°C, respectively. In-situ POM results demonstrated that spherulites crystalline morphology was formed for both PCL and PEG homopolymers. In PEG/PCL blend, however, both the phase separation morphology and spherulitic morphology can be observed. In blends with 30 or 50 wt % PCL, the PCL component formed dispersed phase and crystallized at lower temperature. However, in blends with 70% PCL, the phase inversion behavior occurred. The continuous PCL phase crystallized at 35°C, while the PEG dispersed phase crystallized at a lower temperature. Fractional crystallization behavior of PEG and PCL was controlled by temperature. The spherulites growth rate of PEG was greatly influenced by temperature, instead of the content of PCL component in the PCL/PEG blends.  相似文献   

13.
Crystallization behaviors and spherulitic morphology of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] with different 4-hydroxybutyrate (4HB) molar fraction were investigated by differential scanning calorimetry and polarized optical microscopy. Crystallization behaviors of P(3HB-co-4HB) are significantly affected by 4HB molar fraction. The melting temperature (T m), glass transition temperature (T g), and crystallinity (X c) decrease with the increase of 4HB molar fraction. Banded spherulites are observed in poly (3-hydroxybutyrate) (PHB) and P(3HB-co-4HB) copolymers. The band spacing decreases with the increase of 4HB molar fraction. The morphology and growth rate of the spherulites strongly depend on 4HB molar fraction and the crystallization temperatures. The introduction of 4HB unit can inhibit the emergence of cracks in PHB spherulites.  相似文献   

14.
The crystallization kinetics of biodegradable poly(butylene succinate‐co‐adipate) (PBS/A) copolyester was investigated by using differential scanning calorimetry (DSC) and polarized optical microscopy (POM), respectively. The Avrami and Ozawa equations were used to analyze the isothermal and nonisothermal crystallization kinetics, respectively. By using wide‐angle X‐ray diffraction (WAXD), PBS/A was identified to have the same crystal structure with that of PBS. The spherulitic growth rates of PBS/A measured in isothermal conditions are very well comparable with those measured by nonisothermal procedures (cooling rates ranged from 0.5 to 15 °C/min). The kinetic data were examined with the Hoffman–Lauritzen nucleation theory. The observed spherulites of PBS/A with different shapes and textures strongly depend on the crystallization temperatures. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3231–3241, 2005  相似文献   

15.
The spherulitic morphologies of poly(3-hydroxybutyrate) (PHB) crystallized isothermally from thin melt film with different crystallization temperatures were observed by means of polarized optical microscopy, optical microscopy, SEM, and atomic force microscopy techniques, and the kinetic behaviors were analyzed carefully in this work. It was found that the nonbanded spherulites could be observed at lower and higher crystallization temperatures, and the banded spherulites were formed usually at an intermediate range within experimental crystallization temperatures. The competition of the crystallization rate (v c) and the diffusion rate (v d) of melt molecules was employed to explain the transition of the spherulitic morphologies. It was considered that the change of the ratio of v d and v c would result in the transition of the spherulitic morphologies. The formation and development of the banded structure were discussed in detail. It was found that the band spacing was proportional to diffusion length of melt molecules and increased with increasing of crystallization temperature. The kinetic behaviors of PHB spherulites formed from the thin melt film with different crystallization temperatures were also discussed in this work.  相似文献   

16.
Acid-oxidized multiwalled carbon nanotubes (A-MWCNTs) with a range of reduced aspect ratios (from about 11 to 5.8) were obtained by acid oxidization of MWCNTs in the mixture of HNO 3 and H 2 SO 4 for varying periods of 1, 3, 8 and 12 h, respec- tively. The aspect ratios and surface functionalization of A-MWCNTs were well characterized by scanning electron microsco- py (SEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and thermogravimetric analysis (TGA). Poly(L-lactide)/A-MWCNT composites containing 0.5 wt% A-MWCNTs with a range of reduced aspect ratios were prepared by solution cast. The effects of added A-MWCNTs on the isothermal crystallization kinetics of poly(L-lactide)/A-MWCNT composites were investigated by means of differential scanning calorimetry (DSC), rheology and polarized optical microscopy (POM). It is surprising to find that not only the addition of A-MWCNTs effectively increases the poly(L-lactide) (PLA) crys- tallization kinetics, but also the nucleation ability of A-MWCNTs for PLA crystallization exponentially increases with the re- duced aspect ratio, that is to say, those with lower aspect ratios show much stronger nucleation ability for PLA crystallization than those with higher aspect ratios. The exponentially increased nucleation ability of A-MWCNTs with a range of reduced aspect ratios for PLA crystallization is disclosed.  相似文献   

17.
The crystalline morphology of a thermotropic aromatic polyester crystallized from a nematic melt was investigtated by means of polarized optical microscopy (POM) and scanning electron microscopy (SEM). Due to POM measurements it was found that spherulites of two different types are formed within the two different temperature regions. When Tc was exceeding 170°C, spherulites of type‐1 showing a negative birefringence grew with a radial fibrillar morphology and exhibited a clear Maltese‐cross pattern. The radius growth rate of type‐1 spherulites was about 2.2 μm/min at 185°C. When Tc was smaller than 160°C, spherulites of type‐2 were formed and exhibited a radially outward growing structure but no evident Maltese‐cross pattern. These spherulites could be seen by the naked eyes due to their size reaching several millimeters. SEM observations revealed that the spherulites of type‐1 exhibited a ripple‐like homocentric morphology with periodical compact fibrils having a diameter of about 150 nm perpendicular to the radial direction. In contrast, the spherulites of type‐2 exhibited, as apparent from performed SEM images, radially growing crystallites of about 500 nm in size with no periodicity in the radial direction.  相似文献   

18.
Melting behaviour and crystal morphology of poly(3-hydroxybutyrate) (PHB) and its copolymer of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with various hydroxyvalerate (HV) contents [5 wt.% (PHB5V), 8 wt.% (PHB8V) and 12 wt.% (PHB12V)] have been investigated by conventional DSC, step-scan differential scanning calorimetry (SDSC), wide angle X-ray diffraction (WAXRD) and hot stage polarised optical microscopy (HSPOM). Crystallisation behaviour of PHB and its copolymers were investigated by isothermal crystallisation kinetics. Thermal properties were investigated after isothermal crystallisation treatment. Multiple melting peak behaviour was observed for all polymers. SDSC data revealed that PHB and its copolymers undergo melting-recrystallisation-remelting during heating, as evidenced by exothermic peaks in the IsoK baseline (Cp,IsoK, non-reversing signal). An increase in degree of crystallinity due to significant melt-recrystallisation was observed for isothermally crystallised polymers. SDSC proved a convenient and precise method for measurement of the apparent thermodynamic specific heat (Cp,ATD, reversing signal). PHB and PHBV showed different crystal morphologies for similar crystallisation condition. HSPOM results showed that the crystallisation rates reduced and sizes of spherulites were significantly increased as HV content increased.  相似文献   

19.
The miscibility, spherulite growth kinetics, and morphology of binary blends of poly(β‐hydroxybutyrate) (PHB) and poly(methyl acrylate) (PMA) were studied with differential scanning calorimetry, optical microscopy, and small‐angle X‐ray scattering (SAXS). As the PMA content increases in the blends, the glass‐transition temperature and cold‐crystallization temperature increase, but the melting point decreases. The interaction parameter between PHB and PMA, obtained from an analysis of the equilibrium‐melting‐point depression, is −0.074. The presence of an amorphous PMA component results in a reduction in the rate of spherulite growth of PHB. The radial growth rates of spherulites were analyzed with the Lauritzen–Hoffman model. The spherulites of PHB were volume‐filled, indicating the inclusion of PMA within the spherulites. The long period obtained from SAXS increases with increased PMA content, implying that the amorphous PMA is entrapped in the interlamellar region of PHB during the crystallization process of PHB. All the results presented show that PHB and PMA are miscible in the melt. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1860–1867, 2000  相似文献   

20.
Nonisothermal and isothermal crystallization behaviors of the hyperbranched poly(ε‐caprolactone) (HPCL)/poly(vinyl chloride) (PVC) and linear poly(ε‐caprolactone) (LPCL)/(PVC) blends were characterized with various blend composition such as 100/0, 95/5, 90/10, and 80/20, respectively. HPCL was synthesized through polycondensation of AB2 macromonomer while LPCL and PVC were commercially purchased. The architectural characterization performed on 1H NMR spectra revealed that HPCL consisted of about 3 AB2 units and the linear segments consisted of 25 ε‐CL units. Through the nonisothermal crystallization analyses by modified Avrami approach with DSC crystallization exotherms, it was found that the crystallization rate was retarded by the increase in the noncrystallizable component (PVC) in the blends. This is in good agreement with the results of the isothermal crystallization analyses where time resolved small angle light scattering (SALS) and polarized optical microscopy (POM) were used. The effect of molecular architectural difference between HPCL and LPCL on the crystallization of their binary blends with PVC was elucidated by comparing the crystallization kinetic parameters. Both the nonisothermal and isothermal crystallization analyses showed that the crystallization rates of HPCL/PVC blends was faster than LPCL/PVC blends at given blend compositions. The faster crystallization of the HPCL/PVC blends is ascribed to the two specific architectural characteristics of HPCL; the branched structure and the incorporated long linear segments. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 577–589, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号