首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The crystallization mechanism of superconducting phases in the (Bi,Pb)?Sr?Ca?Cu?O system was determined on the basis of the results of DTA, DTG and TG studies, supplemented by X-ray examination of ceramic powders obtained by the sol-gel method. It has been demonstrated that the factor determining the formation of superconducting phases: Bi2Sr2CaCu2Ox (low-T c ) and Bi2Sr2Ca2Cu3Ox (high-T c ) is the kinetics of reaction of calcium and strontium carbonates with molten CuBi2O4. As a result of the reaction of the bimetallic compound CuBi2O4 with SrCO3 in the liquid phase the compound Bi2Sr2CuO6 is formed. This compound, reacting with calcium and copper oxides, yields superconducting phases: the low-T c and the high-T c phase. It has been also observed that an increase in the volume fraction of high-T c phase in powder subjected to thermal treatment takes place probably due to the repeated disproportionation of low-T c phase and its repeated synthesis from Bi2Sr2CuO6, CuO and CaO.  相似文献   

2.
The production of bulk high T c superconducting phase (2223) by EDTA-gel (ethylenediaminetetraacetic acid) techniques has been investigated. It is shown that close control of pH is necessary for the production of a well-complexed precursor which allows subsequent decomposition in two stages at 300 and 800°C. The problem of carbonate formation was investigated experimentally and solved. Precursors are characterised by Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) and the sintering behaviour was monitored by dilatometry. At least three different phases Bi2Sr2Cax−1CuxO8+y (BSCCO); where x=1, 2, 3 were identified within superconducting pellets using XRD, named as Bi2Sr2CuO7 (2201), Bi2Sr2CaCu2O9 (2212) and Bi2Sr2Ca3O10 (2223). The superconducting properties of the sintered samples were studied by vibrating sample magnetometer (VSM). Transition to a superconducting state around 80 K appeared in samples (sintered at 845°C) containing the Bi2Sr2Ca1Cu2Oy (2212) phase. Liquid phase sintering of the samples aided the formation of Bi2Sr2Ca2Cu3Ox (2223) phase at high temperature (860°C), which showed a superconducting transition temperature of 108 K.  相似文献   

3.
Single crystals ((Ba0.78(1)Sr0.22)4O)Bi2 and ((Ba0.62(1)Sr0.38)10N2O)Bi4 were successfully prepared from melt beads of Ba, Sr, and Bi in nitrogen atmosphere with oxygen impurities. The phases can be prepared in single phase from the appropriate mixtures of alkaline‐earth metal, bismuth, and bismuth oxide upon heating in pure nitrogen atmosphere. ((Ba0.78(1)Sr0.22)4O)Bi2 crystallizes in the K2NiF4 structure type (space group I4/mmm, No. 139, a = 522.34(5) pm, c = 1844.0(2) pm, Z = 2, Rgt(F) = 0.039) with layers of vertex‐sharing octahedra ((Ba,Sr)4/2Ba2O). ((Ba0.62(1)Sr0.38)10N2O)Bi4 crystallizes as an isotype of Sr4Ti3O10 (space group I4/mmm, No. 139, a = 531.3(1) pm, c = 3983.2(4) pm, Z = 2, Rgt(F) = 0.050) containing slabs of three layers of vertex‐sharing octahedra further connected via corners. These compounds are interpreted in terms of members of an inverse Ruddlesden‐Popper series with the general formula n (A3ONn?1)Bi · ABi or (A3n+1ONn?1)Bin+1, respectively, with n = 1, 3. Partial order of the alkaline‐earth metal ions is analyzed.  相似文献   

4.
The high TC superconducting phase Bi2Sr2Ca2Cu3Ox (2223) in the Pb-BSCCO system has been produced by EDTA-gel processing using nitrate solutions. The precursor has heated in two stages, at 300 and 800°C each for 2 h, to avoid the burning of the important species involved in the final product. The effects of time (6 to 48 h) and temperature (845 and 855°C) on the formation of the 2223 phase have been studied by sintering the samples in air. Thermal analysis (TG/DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM) and a vibrating sample magnetometer (VSM) have been employed to investigate the powder produced at different stages of decomposition, oxidation and formation of sintered materials from the powders. The volume-fraction of the 2223 phase at 845°C increases with time, the maximum value of the 2223 phase was obtained at 120 h. It has been observed that the formation of the high TC phase is remarkably enhanced at the temperature of the endothermic peak of the DTA curve. The best result has been obtained in the sample sintered for 24 h at the temperature 855°C (endothermic peak). This also indicated that at 855°C, the large volume-fraction of 2223 phase with TC 113 K grew in short time and as the sintering time increased, it decomposed into the Bi2Sr2CaCu2Ox (2212) phase and other phases.  相似文献   

5.
The compounds Ae3Sn4?xBi1+x (Ae = Sr, Ba) with x < 1 have been synthesized by solid‐state reactions in welded Nb tubes at high temperature. Their structures were determined by single crystal X‐ray diffraction studies to be tetragonal; space group I4/mcm (No. 140); Z = 4, with a = 8.968(1) Å, c = 12.859(1) Å for Sr3Sn3.36Bi1.64(3) ( 1 ) and a = 9.248(2), c = 13.323(3) Å for Ba3Sn3.16Bi1.84(3) ( 2 ). The structure consists of two interpenetrating networks formed by a 3D Ae6/2Bi substructure (anti‐ReO3 type) forming the host, and layers of interconnected four‐member units [Sn4?xBix] with “butterfly”‐like shape as the guest. According to the Zintl‐Klemm concept, the compounds are slightly electron deficient and will be charge balanced for x = 1. The electronic structures of Ae3Sn4?xBi1+x calculated by the TB‐LMTO‐ASA method indicate that the compounds correspond to ideal semiconducting Zintl phases with a narrow band gap for x = 1 (zero‐gap semiconductor). The origin of the slight deviation from the optimal electron count for a valance compound is discussed.  相似文献   

6.
KBa4Bi3O crystallizes in the centrosymmetric tetragonal space group I4/mcm. In this compound, bismuth is present as two anionic species, i.e. Bi24? dumbbells [Bi—Bi 3.113 (3) Å] and isolated Bi3?. Atom Bi1 (Bi3?) lies inside a bicapped square antiprism (2 × K and 8 × Ba). Atom Bi2, which forms the Bi24? dumbbell, sits inside a bicapped distorted trigonal prism (2 × K and 6 × Ba). O atoms occupy tetra­hedral voids between Ba atoms.  相似文献   

7.
The compounds BiMO2NO3, with M=Pb, Ca, Sr, and Ba, were obtained as single-phase products from solid-state reactions in an atmosphere of nitrous gases. The oxide nitrates with Pb and Ca crystallize in the tetragonal space group I4/mmm with two formula units per unit cell; the oxide nitrates with Sr and Ba crystallize in the orthorhombic space group Cmmm with four formula units per unit cell. Lattice parameters at room temperature are a=397.199(4), c=1482.57(2) pm for M=Pb; a=396.337(5), c=1412.83(3) pm for M=Ca; a=1448.76(3), b=567.62(1), c=582.40(1) pm for M=Sr and a=1536.50(8), b=571.67(3), c=597.55(3) pm for M=Ba. The structures, which were refined by powder X-ray diffraction, consist of alternating [BiMO2]+ and [NO3] layers stacked along the direction of the long axis. IR and thermogravimetric data are also given. The various M2+ cations in BiMO2NO3 are compatible with each other; therefore and because of their layer-type structure, these compounds are interesting precursors for oxide materials, e.g., the HTSC compounds (Bi,Pb)2Sr2Can−1CunOx.  相似文献   

8.
Sodium insertion in the tetrahedral layer structure of the ferrites Ba2−xSrxFe4O8 was performed by solid state reaction at 1220 K in air. Superstoichiometric oxides with the actual formula (Ba2−xSrx)1−y/4NayFe4O8y0.56; 0.60Ba/Sr1.67—were characterized by X-ray and neutron powder diffraction. The hexagonal unit-cell volume shows an increasing dependence on the sodium insertion when the Ba/Sr ratio reaches the largest values. The marked expansion of the c parameter is the likely signature of the location of the inserted sodium cations within the interlayer space. One-half of the sodium cations partly sits on the Sr(Ba) sites in octahedral coordination and the other half occupies extra octahedral and tetrahedral sites. ac conductivity measurements point to a cationic conductivity whose thermally activated regime—Ea 0.7 eV—evidenced from 570 K, is unsensitive to the sodium content. The bottleneck of the 2D sodium mobility regards the crossing of the oxygen triangular faces shared by the different polyhedra within the interlayer space.  相似文献   

9.
Three-layer Aurivillius ceramics Bi2SrCaNb2TiO12, Bi2Sr1.5Ca0.5Nb2TiO12, Bi2Sr2Nb2TiO12, Bi2Sr1.5Ba0.5Nb2TiO12, and Bi2SrBaNb2TiO12 were formed via solid-state synthesis and their structures characterized by combined Rietveld analysis of powder X-ray and neutron diffraction data. Static disorder was observed in the form of mixed cation occupancies between the Bi and the Sr, Ca, or Ba on the A sites in the perovskite block, as well as between the Nb and Ti sites. The degree of site mixing between the Bi site in the (Bi2O2)2+ layer and the perovskite-block A site increased with increasing average A site cation radius (ACR). Bi2SrBaNb2TiO12 displayed the greatest degree of Bi-A site static disorder. Bond valence sum (BVS) calculations showed an increase in A site BVS with average A site cation radius. All compositions except Bi2SrCaNb2TiO12 had overbonded A sites and the A site BVS increased nearly linearly with lattice parameter and ACR. A preference was observed for Ca2+ to remain on the A site while Ba2+ preferred to disorder to the Bi site, indicating that the cation site mixing occurs to reduce strain between the (Bi2O2)2+ layer and the perovskite block in the structure. Unusually large Ti site BVS and thermal parameter for the equatorial oxygen in the TiO6 octahedra were observed in structural models that included full oxygen occupancy. However, excellent structure models and more reasonable BVS values were obtained by assuming oxygen vacancies in the TiO6 octahedra. AC impedance spectroscopy performed on all samples indicate that the total electrical conductivity is on the order of at 900°C.  相似文献   

10.
Sol-gel process was employed to synthesize the Pb-BSCCO system having general composition Bi2−xPbxSr2Ca2Cu3O10−δ, where x=0.2, 0.4 and 0.8. Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), dilatometry and vibrating sample magnetometer (VSM) were employed to study the materials produced at different stages. Two-stage heating firstly at 300 and then 800°C was adopted in order to avoid the burning of the materials and formation of carbonates. The carbonate formation was avoided by heating the materials firstly at 300°C for 2 h and without intermediate cooling moved to the furnace having temperature 800°C and hold for 2 h. The sintering behaviour of samples was studied by dilatometry and the results revealed that the sample having x=0.4 was stabled up to a temperature of 700°C while samples having x=0.2 and 0.8 to a temperature of 625°C. The maximum shrinkage was observed at 850°C in all the samples. On the basis of dilatometry results, the samples were sintered at 845°C for 60 h to observe the superconducting phases. The highest volume fraction of high superconducting phase (2223) was noticed in the sample containing x=0.4 having onset T c=110 K.  相似文献   

11.
Bi1?xSrxFeO3?δ perovskites synthesised by solid-state reaction in ambient atmosphere or in a closed vessel were analysed by X-ray diffraction and Mössbauer spectroscopy. The evolution of the valence state of iron with both Bi/Sr ratio and oxygen content has been more particularly discussed. The samples are single phase and homogeneous for x ≤ 0.5 (Bi-rich) and x > 0.8 (Sr-rich). For intermediate Sr contents, the samples are less homogeneous and tend to contain both Bi-rich and Sr-rich phases. The appearance of Sr-rich phases for x > 0.5 corresponds to the appearance of Fe4+, to compensate for the lack of positive charges due to the replacement of Bi3+ by Sr2+.  相似文献   

12.
The electronic structure of compounds from the family of Aurivillius phases of the general formula Bi2O2[An−1BnO3n+1], where n is the number of perovskite layers, was calculated by the ab initio LMTO-ASA method. For compounds with B=Nb, Ti; A=Ca, Sr, Ba, Bi, and n=1, 2, variations of the electronic structure and properties depending on the number of perovskite units and on the varieties of A and B cations were studied. Effects of vacancy formation in the Bi2O2 layers and metal-oxygen planes are considered. The instability of Bi2NbO6 is explained, and favorable positions for oxygen replacement by fluorine are found. The possibility of superconductivity in these compounds is considered. Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences. Translated fromZhurnal Struktumoi Khimii, Vol. 37, No. 3, pp. 471–478, May–June, 1996.  相似文献   

13.
The high temperature superconductors of the system Bi-Pb-Sr-Ca-Cu-O show promising properties and large scale applications can be considered. The (Bi,Pb)2Sr2Ca2Cu3O10+ (Bi,Pb(2223)) phase is attractive because of its high superconducting temperature (110 K) and high current transport capabilities.Simultaneous DTA/TG has proved an excellent tool for synthesizing, characterizing these high temperature superconductors, confirming phase diagrams and finding the optimal annealing temperature for Bi,Pb(2223)/Ag tapes in order to obtain high critical current densities around 30 kA cm–2 at 77 K and 0T. The identification of the main DTA peaks of measurement of different phase mixtures made it possible to observe the formation of an intermediate phase Bi,Pb(2212) during the formation of Bi,Pb(2223).  相似文献   

14.
Fundamentally different behavior of Ba–Bi–O (Ba : Bi = 11 : 4, 1 : 1, 2: 3, and 1 : 5 mol/mol) and KnBamBim+nOy (m = n = 1, 2,...; exhibiting superconducting properties with Tc = 28–32 K) oxides and BaO2 in hydrolysis reactions has been revealed by means of potentiometry and chemical analysis. Products of the oxides treatment with water do not contain H2O2, evidencing the absence of peroxide ions in their structure. The perovskite-type barium-bismuth(III) oxides are completely hydrolyzed into Ba(OH)2 and Bi2O3 at room temperature.  相似文献   

15.
Cooling a melt of a Bi–Sr–Ca–Cu–O system (Bi:Sr:Ca:Cu = 4:3:3:4 or 2:2:2:4) from 1000°C-1050°C yielded crystals of a new red-colored nonsuperconducting phase, accompanying the superconducting 2212 and 2201 phases. Based on the EPR spectra, it was concluded that copper is univalent in this compound. The new phase has a composition Bi2.2Sr1.6Ca1.3Cu2Ox. The X-ray diffraction pattern has been indexed, and the unit cell parameters of the phase have been determined: space group P2/m, a = 12.93, b = 4.55, c = 10.94 ; = 102.72°.  相似文献   

16.
Crystal structures of a series of bi-layered compounds ABi4Ti4O15 (A=Ca, Sr, Ba, Pb) have been investigated using a combination of synchrotron X-ray and neutron powder diffraction data. All four oxides adopt an orthorhombic structure at room temperature and the structures have been refined in space group A21am. This orthorhombic structure is a consequence of a combination of rotation of the TiO6, resulting from the less than optimal size of the A-type cation, and displacement of the Ti atoms towards the Bi2O2 layers. There is partial disorder of the Bi and A-type cations over two of the three available sites, which increases in the order Ca<Sr and Pb<Ba.  相似文献   

17.
Thermal properties of glasses from the system Bi x (As2S3)100−x were studied by differential scanning calorimetry of a representative series of samples with x = 0.5, 2, 4, 6, 8, and 10 at.% Bi by determining the characteristic temperatures (T g, T onset, T c, T m) and enthalpies (H c, H m) of the processes taking place in the samples during their thermal treatment. Analysis of DSC recordings for the samples at the same heating rate allowed characterization of the phase transition temperature T g as a function of the content of doping atoms in accordance with the criteria of chemical bonds formation in amorphous materials. Samples with 4 and 6 at.% Bi were thermally treated at different heating rates with the aim of determining, among the others, the parameters of their thermal stability. The assessment was done based on three different criteria. A higher tendency toward crystallization was observed with the glasses having a higher Bi content. Also, a trend of T g shifting toward higher values, observed with increase in the heating rate, is in concordance with the Lasocka equation.  相似文献   

18.
The glassy precursors were fabricated by quenching the melted materials with copper plates. In the case of heating the properties of the quenched samples were changed, because as a result of solid-state reactions formation of cuprate occurs. The amorphous samples were annealed in air and transformed to the crystalline state. This process can be seen by DTA and electric resistivity behaviours. The microscopic observation of the polished surfaces show the growth of the superconducting phase Bi2Sr2CaCu2O8+x (for composition Bi-2212) and Bi2Sr2CaCu2O8+x with Bi2Sr2Ca2Cu3O10+x (for composition Bi-2223 and Bi-2234), respectively.  相似文献   

19.
Electrochemical Synthesis of Perovskites in the System K/Ba/Pr/Bi/O An easy procedure for the synthesis of well crystalline samples of (K,Ba)(Pr,Bi)O3 is provided by anodic oxidation of melts consisting of Ba(OH)2 / KOH / Pr(NO3)3 / Bi(NO3)3, at comparatively low temperatures of about 220 °C. We have explored the influence of different parameters like temperature, potential of the working electrode, and composition of the electrolyte. Chemical and thermal analyses were performed. Products obtained at different experimental conditions revealed different Ba/K and Pr/Bi ratios with a large homogeneity range. X‐Ray powder diffraction and single crystal structure analyses of KxBa1?xPryBi1?yO3 proved these compounds to be cubic perovskites. Barium and potassium ions are disordered occupying the A‐sites while praseodym and bismuth ions share the B‐sites or are ordered, as indicated by a doubling of the lattice parameter. The composition x and y can independently be altered. XPS analysis and physical properties are reported and discussed.  相似文献   

20.
The systems CaHPO4−MHPO4−H2O (M=Sr, Ba) were studied at 50°C. ForM=Sr, the series of single phases, Ca1−xSrxHPO4 for 0.95<X<0.75 and CaxSr1−xHPO4 for 0.4<X<1 have been prepared. These solid solution were caracterized by their infrared spectra and their crystallographic unit cell parameters. ForM=Ba a new phase Ca2Ba(HPO4)3 has been determined. It was characterized by DRX, IR, ATD and chemical analyses.

Zusammenfassung Bei 50°C wurde das System CaHPO4−MHPO4−H2O (mitM=Sr, Ba) untersucht. FürM=Sr wurden Serien von Einzelphasen erhalten: Ca1−xSrxHPO4 für 0.95<X< 0.75 und CaxSr1−xHPO4 für 0.4<X<1. Diese Mischkristalle wurden anhand ihrer Infrarotspektren und ihrer kristallographischen Elementarzellenparameter charakterisiert. FürM=Ba wurde die neue Phase Ca2Ba(HPO4)3 ermittelt. Sie wurde mittels DRX, IR, ATD und chemischer Analyse charakterisiert.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号