首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper describes elaboration of two dimensional photonic crystal structures based on Thue–Morse sequence. Our results establish that the optical properties of these aperiodic multilayer systems can be tailored by adjusting either the radius of some cells of the proposed structure or defect characteristics. We introduce a resonant cavity in the proposed structure to select desirable wavelengths for filtering. Bandwidth of selected wavelengths are about 1 nm and suitable for communication applications. Also, our simulations show that efficiency of the proposed structure is enough. The total footprint of proposed filter is 331.24 μm2, therefore it is suitable to be integrated in all optical chips.  相似文献   

2.
We developed a micro-magnetometry with a 2.5 μm spatial resolution based on micro X-ray magnetic circular dichroism (XMCD) technique in order to study magnetic properties of dot arrays for bit-patterned media. This micro-magnetometer was applied to the magnetic characterization of Co–Pt dot arrays fabricated by ion beam etching. As the dot size became small, the intensity of XMCD drastically decreased for dots fabricated by Ga-focused ion beam. This suggested that the dot edges were damaged magnetically by implantation of Ga ions. The damaged width of the dot edge was estimated to be about 13 nm from the decrease in XMCD intensities. This damaged edge width agreed with the ion-implanted area estimated by Monte-Carlo simulation. The less-damaged effect of Ar ion etching was verified by the XMCD measurement of Co–Pt dots with diameter of 20 and 70 nm. It was concluded that ions with inertness, lower energy and smaller atomic number should be used to fabricate dot arrays with an areal density of 1 Tbit/in2.  相似文献   

3.
To understand the role of electron correlation and disorder on persistent currents in isolated 1D rings threaded by magnetic flux ?, we study the behavior of persistent currents in aperiodic and ordered binary alloy rings. These systems may be regarded as disordered systems with well-defined long-range order so that we do not have to perform any configuration averaging of the physical quantities. We see that in the absence of interaction, disorder suppresses persistent currents by orders of magnitude and also removes its discontinuity as a function of ?. As we introduce electron correlation, we get enhancement of the currents in certain disordered rings. Quite interestingly we observe that in some cases, electron correlation produces kink-like structures in the persistent current as a function of ?. This may be considered as anomalous Aharonov-Bohm oscillations of the persistent current and recent experimental observations support such oscillations. We find that the persistent current converges with the size of the rings.  相似文献   

4.
It has been shown recently that shear horizontal acoustic waves propagating in piezoelectric plates whose thickness h is much less than the acoustic wavelength λ possess a number of attractive properties for use in sensor and signal processing applications. In order to exploit the potential benefits of these waves, however, one needs to fabricate devices on very thin plates. We have developed a suitable fabrication method which can be used to realize devices on such thin plates. In this method, the device is first fabricated on a plate of normal thickness (approximately 500 μm) and the substrate is then lapped from the back side to reduce the thickness. The technique has been utilized to realize devices on plates of thickness less than 70 μm. A shear horizontal plate acoustic wave (SH-PAW) delay line of fundamental resonant frequency greater than 25 MHz and insertion loss less than 7 dB has been realized on a 60 μm thick Y – cut, X – propagation lithium niobate substrate. The device also shows strong response near the third harmonic frequency of 75 MHz.  相似文献   

5.
We present a unifying framework to study physical systems which exhibit topological quantum order (TQO). The major guiding principle behind our approach is that of symmetries and entanglement. These symmetries may be actual symmetries of the Hamiltonian characterizing the system, or emergent symmetries. To this end, we introduce the concept of low-dimensional Gauge-like symmetries (GLSs), and the physical conservation laws (including topological terms, fractionalization, and the absence of quasi-particle excitations) which emerge from them. We prove then sufficient conditions for TQO at both zero and finite temperatures. The physical engine for TQO are topological defects associated with the restoration of GLSs. These defects propagate freely through the system and enforce TQO. Our results are strongest for gapped systems with continuous GLSs. At zero temperature, selection rules associated with the GLSs enable us to systematically construct general states with TQO; these selection rules do not rely on the existence of a finite gap between the ground states to all other excited states. Indices associated with these symmetries correspond to different topological sectors. All currently known examples of TQO display GLSs. Other systems exhibiting such symmetries include Hamiltonians depicting orbital-dependent spin-exchange and Jahn-Teller effects in transition metal orbital compounds, short-range frustrated Klein spin models, and p+ip superconducting arrays. The symmetry based framework discussed herein allows us to go beyond standard topological field theories and systematically engineer new physical models with finite temperature TQO (both Abelian and non-Abelian). Furthermore, we analyze the insufficiency of entanglement entropy (we introduce SU(N) Klein models on small world networks to make the argument even sharper), spectral structures, maximal string correlators, and fractionalization in establishing TQO. We show that Kitaev’s Toric code model and Wen’s plaquette model are equivalent and reduce, by a duality mapping, to an Ising chain, demonstrating that despite the spectral gap in these systems the toric operator expectation values may vanish once thermal fluctuations are present. This illustrates the fact that the quantum states themselves in a particular (operator language) representation encode TQO and that the duality mappings, being non-local in the original representation, disentangle the order. We present a general algorithm for the construction of long-range string and brane orders in general systems with entangled ground states; this algorithm relies on general ground states selection rules and becomes of the broadest applicability in gapped systems in arbitrary dimensions. We exactly recast some known non-local string correlators in terms of local correlation functions. We discuss relations to problems in graph theory.  相似文献   

6.
We consider the dynamics of a single electron in a chain of tunnel coupled quantum dots, exploring the formal analogies of this system with some of the laser-driven multilevel atomic or molecular systems studied by Bruce W. Shore and collaborators over the last 30 years. In particular, we describe two regimes for achieving complete coherent transfer of population in such a multistate system. In the first regime, by carefully arranging the coupling strengths, the flow of population between the states of the system can be made periodic in time. In the second regime, by employing a “counterintuitive” sequence of couplings, the coherent population trapping eigenstate of the system can be rotated from the initial to the final desired state, which is an equivalent of the STIRAP technique for atoms or molecules. Our results may be useful in future quantum computation schemes.  相似文献   

7.
Employing mutual-inductance measurements, we study the magnetic field dependence of complex AC susceptibility of artificially prepared highly ordered (periodic) two-dimensional Josephson junction arrays of unshunted Nb-AlOx-Nb junctions. The observed behavior can be explained assuming single-plaquette approximation of the overdamped model with an inhomogeneous critical current distribution within a single junction.  相似文献   

8.
We investigate using density functional theory (DFT) the electronic structure of (∼3%) Co-doped ZnO in the presence of native n-type donor defects such as VO and ZnI. In particular, we apply a pseudopotential-based self-interaction correction (pseudo-SIC) scheme as an improvement to the local spin-density approximation (LSDA). This overcomes major short comings of the LSDA in describing Co-doped ZnO. Donor+dopant pair complexes such as Co–VO and Co–ZnI are studied as relevant magnetic centres for long-range magnetic interactions at low-dopant concentrations. We find that complex formation is energetically favourable but the inter-complex magnetic coupling is too weak to account for room temperature ferromagnetism in ZnO:Co  相似文献   

9.
Co50Fe50 films with thickness varying from 100 to 500 Å were deposited on a glass substrate by sputtering process, respectively. Two kinds of CoFe films were studied: one was the as-deposited film, and the other the annealed film. The annealing procedure was to keep the films at 400 °C for 5 h in a vacuum of 5×10−6 mbar. From the X-ray study, we find that the as-deposited film prefers the CoFe(1 1 0) orientation. Moreover, the body-centered cubic (bcc) CoFe(1 1 0) line is split into two peaks: one corresponding to the ordered body-centered tetragonal (bct) phase, and the other, the disordered bcc phase. After annealing, the peak intensity of the ordered bct phase becomes much stronger, while that of the disordered bcc phase disappears. The annealing has also caused the ordered CoFe(2 0 0) line to appear. When the amount of the ordered bct phase in Co50Fe50 is increased, the saturation magnetization (Ms) and coercivity (Hc) become larger, but the electrical resistivity (ρ) decreases. From the temperature coefficient of resistance (TCR) measurement, we learn that the bct grains in the CoFe film start to grow at temperature 82 °C.  相似文献   

10.
Giant persistent currents that occur in quasiperiodic Thue–Morse array of mesoscopic rings are proposed. As the order of the system increases, the maximum persistent current increases exponentially. The giant persistent current in a system with higher order is greater than that in traditional structures. It is found that the maximum persistent current occurs in the ring near the middle position of the array. The persistent current is also proportional to the sharpness of the transport resonance, which is dependent on the width of the allowed band in the bandstructure. A rule to determine the occurrence energy of the giant persistent currents for a system with arbitrary order is also proposed.  相似文献   

11.
Effect of sample shape on the nonlinear collective dynamics of magnetic moments in the presence of oscillating and constant external magnetic fields is studied using the Landau–Lifshitz–Gilbert (LLG) approach. The uniformly magnetized sample is considered to be an ellipsoidal axially symmetric particle described by demagnetization factors and uniaxial crystallographic anisotropy formed some angle with an applied field direction. It is investigated as to how the change in particle shape affects its nonlinear magnetization dynamics. To produce a regular study, all results are presented in the form of bifurcation diagrams for all sufficient dynamics regimes of the considered system. In this paper, we show that the sample's (particle's) shape and its orientation with respect to the external field (system configuration) determine the character of magnetization dynamics: deterministic behavior and appearance of chaotic states. A simple change in the system's configuration or in the shapes of its parts can transfer it from chaotic to periodic or even static regime and back. Moreover, the effect of magnetization precession stall and magnetic moments alignment parallel or antiparallel to the external oscillating field is revealed and the way of control of such “polarized” states is found. Our results suggest that varying the particle's shape and fields’ geometry may provide a useful way of magnetization dynamics control in complex magnetic systems.  相似文献   

12.
Off-axial contribution of beam self-focusing in plasma with density ripple is investigated. Apply paraxial ray theory and Wentzel–Krammers–Brillouin approximation, the results shown that, in interaction of laser and plasma with density ripple, beam self-focusing presents some interesting diverse features when off-axial contribution is obvious. In the paper, we find, on the one hand, density ripple can minimize the defocusing and beam still retains a localized profile with an oscillatory self-focusing and defocusing, on the other hand, with the increase of off-axial contribution, laser beams presents four various self-focusing features, which laser beam intensity profile splits into three-splitted with central axial convex profile, three-splitted with equal amplitude profile, three-splitted with central axial concave profile and two-splitted intensity profile.  相似文献   

13.
A new, approximate block Newton (ABN) method is derived and tested for the coupled solution of nonlinear models, each of which is treated as a modular, black box. Such an approach is motivated by a desire to maintain software flexibility without sacrificing solution efficiency or robustness. Though block Newton methods of similar type have been proposed and studied, we present a unique derivation and use it to sort out some of the more confusing points in the literature. In particular, we show that our ABN method behaves like a Newton iteration preconditioned by an inexact Newton solver derived from subproblem Jacobians. The method is demonstrated on several conjugate heat transfer problems modeled after melt crystal growth processes. These problems are represented by partitioned spatial regions, each modeled by independent heat transfer codes and linked by temperature and flux matching conditions at the boundaries common to the partitions. Whereas a typical block Gauss–Seidel iteration fails about half the time for the model problem, quadratic convergence is achieved by the ABN method under all conditions studied here. Additional performance advantages over existing methods are demonstrated and discussed.  相似文献   

14.
A theoretical model is proposed to study the ballistic electron transport for a quasi-periodic multibarrier structure where two different barrier shapes are arranged according to the Thue–Morse sequence. Important tunneling features are revealed form such arrangements. It is noted that the tunneling band spectrum could be fragmented by tailoring the shape of the barriers in the structure. Results for the transmission coefficients and the current densities are compared with the corresponding periodic and single shape barrier arrangements. The quasi-periodic structure consisting of the rectangular and triangular barrier shapes is suggested to be more suitable for the electronic and opto-electronic devices due to its high negative differential conducting effect.  相似文献   

15.
Superconducting maglev vehicle was one of the most promising applications of HTS bulks. In such a system, the HTS bulks were always exposed to AC external magnetic field, which was generated by the inhomogeneous surface magnetic field of the NdFeB guideway. In our previous work, it was observed that the guidance force of the YBCO bulk over the NdFdB guideway used in the high-temperature superconducting maglev vehicle system was decayed by the application of the AC external magnetic field. In this paper, we adopted a method to suppress the decay by altering the field–cooled height of the bulk. From the experimental results, it was found that the decay rate of the guidance force was smaller at lower field–cooled height. So we could suppress the guidance force decay of HTS bulk exposed to AC external magnetic field perturbation in the maglev vehicle system by reducing the field–cooled height of the bulk. Furthermore, all the experimental results in this paper were explained based on Bean critical-state model.  相似文献   

16.
The density-functional theory (DFT) within the full potential linearized augmented plane wave (FPLAPW) method was applied to study the layered organic–inorganic hybrid Fe[CH3(CH2)2PO3(H2O)]. The relative stability of the ground state, the electronic band structure, the magnetic and the conducting properties were investigated. The calculations reveal that the compound has a stable ferromagnetic ground state and the spin magnetic moment per molecule is about 4.0 μB, which is mainly from Fe(II) ion. By analysis of the band structure, we find that the compound has half-metallic properties.  相似文献   

17.
We describe a novel physical application of the OctTree data structure [P. Meagher, Comput. Graphics Image Process 19(2) (1982) 129–147] in a dynamically tessellating algorithm, in conjunction with an object-oriented, constructive solid geometry library (DOC), to efficiently determine pore size distributions in large multi-particle systems. We apply the DOC library to investigate the evolving dynamics of pore formation in multi-particle systems, such as a mixture of smooth hard cubes and spheres and a collection of frictional soft spheres. We demonstrate that the algorithm is able to provide insight into the effect of structural changes on the porosity network; for example, during the uniaxial compaction of soft spheres, we find the number density of pores increases while the mean volume of the pores decreases. This trend is responsible for a shift in the distribution of the pore volumes to favour smaller volumes. We anticipate that the DOC method will have wider applications in the area of granular materials for studying the changes in pore structure in both experimental and numerical systems as a complement to the analysis of particle packing.  相似文献   

18.
We identify fundamental mechanisms of electron and hole dynamics in self-organized InAs/GaAs quantum dots (QDs) subject to vertical electric fields by photocurrent investigations. We propose a spin–flip mechanism involving a spin exchange between neighboring QDs. The spin–flip process is revealed in the photocurrent dynamics when the exciton population increases unexpectedly with reverse bias.  相似文献   

19.
Semiconductor quantum dots are a promising class of materials in the labeling of biological systems. In the present study we show the marking pattern of Trypanosoma cruzi (T. cruzi) live parasites using PEGylated CdS/Cd(OH)2 fluorescent nanocrystals. The analysis obtained by confocal fluorescence microscopy and transmission electron microscopy indicates that only the endocytic paths of parasites were labeled. The parasites were alive after the incubation with the CdS/Cd(OH)2-PEG suspension. Labeling the T. cruzi with quantum dots can help to better understand the endocytosis process and also the cellular differentiation.  相似文献   

20.
Photoreflectance and photoluminescence measurements were performed on the ensemble of self assembled InAs/GaAs quantum dots designed to emit at 1.3 μm. As many as six QDs-related optical transitions were observed in PR spectra, the energies of which were confirmed by high-excitation PL results. Numerical calculations allowed estimating the average size of the dots, which is larger than for standard InAs/GaAs QDs. This result is in agreement with structural data. Additionally, the energy level structure for such QDs was derived and compared with the electronic structure of standard InAs/GaAs dots. It was shown that the energy level structure of such large dots qualifies them for the active region of a laser emitting at 1.3 μm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号