首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Knudsen mass-loss effusion technique was used to measure the vapour pressures at different temperatures of the following six compounds: 2-methyl-3-nitrobenzoic acid, between T =  357.16 K and T =  371.16 K; 2-methyl-6-nitrobenzoic acid, between T =  355.16 K and T =  369.16 K; 3-methyl-2-nitrobenzoic acid, between T =  371.16 K and T =  385.14 K; 3-methyl-4-nitrobenzoic acid, between T =  363.21 K and T =  379.16 K; 4-methyl-3-nitrobenzoic acid, between T =  363.10 K and T =  377.18 K; 5-methyl-2-nitrobenzoic acid, between T =  355.18 K and T =  371.08 K. From the temperature dependence of the vapour pressure, the standard molar enthalpies of sublimation were derived by the Clausius–Clapeyron equation and the molar entropies of sublimation at equilibrium pressures were calculated. Using estimated values for the heat capacity differences between the gas and the crystal phases of the studied compounds the standard, po =  105Pa, molar enthalpies ΔcrgHmo, entropies ΔcrgSmoand Gibbs energies ΔcrgGmoof sublimation at T =  298.15 K, were derived:  相似文献   

2.
The Knudsen mass-loss effusion technique was used to measure the vapour pressures at different temperatures of the following compounds: 3-phenylpropionic acid, between T =  305.17 K and T =  315.17 K; 3-(2-methoxyphenyl)propionic acid, between T =  331.16 K and T =  347.16 K; 3-(4-methoxyphenyl)propionic acid, between T =  341.19 K and T =  357.15 K; 3-(3,4-dimethoxyphenyl)propionic acid, between T =  352.18 K and T =  366.16 K. From the temperature dependence of the vapour pressure, the standard molar enthalpies of sublimation ΔcrgHmowere derived by the Clausius–Clapeyron equation and the molar entropies of sublimation at equilibrium pressures were calculated. On the basis of estimated values for the heat capacity differences between the gas and the crystal phases of the studied compounds the standard, p   =  105Pa, molar enthalpies, entropies and Gibbs energies of sublimation at T =  298.15 K, were derived:  相似文献   

3.
In adiabatic low-pressure and dynamic calorimeters the temperature dependence of the standard molar heat capacity Cp, moof dibenzo- p -dioxin and 1,2,3,4-tetrachlorodibenzo- p -dioxin have been determined at temperatures in the range T =  5 K to T =  490 K: from T =  5 K to T =  340 K with an accuracy of about 0.2 per cent and with an accuracy of 0.5 per cent to 1.5 per cent between T =  340 K and T =  490 K. The temperatures, enthalpies, and entropies of melting of the above compounds have been determined. The experimental data were used to calculate the thermodynamic functions Cp, mo / R, Δ0THmo / (R·K), Δ0TSmo / R, and Φmo = Δ0TSmo  Δ0THmo / T(where R is the universal gas constant) in the range T   0 to T =  490 K. The isochoric heat capacity CV, mof both dioxins has been estimated over the range T   0 to Tfus. The effect of substitution of four hydrogen atoms by chlorine atoms on the lattice and atomic components of the isochoric heat capacity was considered.  相似文献   

4.
The heat capacity of a 13 nm hematite (α-Fe2O3) sample was measured from T = (1.5 to 350) K using a combination of semi-adiabatic and adiabatic calorimetry. The heat capacity was higher than that of the bulk which can be attributed to the presence of water on the surface of the nanoparticles. No anomaly was observed in the heat capacity due to the Morin transition and theoretical fits of the heat capacity below T = 15 K show a small T3 dependence (due to lattice contributions) with no T3/2 dependence. This suggests that there are no magnetic spin-wave contributions to the heat capacity of 13 nm hematite. The use of a large linear term to fit the heat capacity below T = 15 K is most likely due to superparamagnetic contributions. A small anomaly within the temperature range (4 to 8) K was attributed to the presence of uncompensated surface spins.  相似文献   

5.
Binary mutual diffusion coefficients (interdiffusion coefficients) of nickel chloride in water at T = 298.15 K and T = 310.15 K, and at concentrations between (0.000 and 0.100) mol · dm?3, using a Taylor dispersion method have been measured. These data are discussed on the basis of the Onsager–Fuoss and Pikal models. The equivalent conductance at infinitesimal concentration of the nickel ion in these solutions at T = 310.15 K has been estimated using these results. Through the same technique, ternary mutual diffusion coefficients (D11, D22, D12, and D21) for aqueous solutions containing NiCl2 and lactose, at T = 298.15 K and T = 310.15 K, and at different carrier concentrations were also measured. These data permit us to have a better understanding of the structure of these systems and the thermodynamic behaviour of NiCl2 in different media.  相似文献   

6.
The Knudsen mass-loss effusion technique was used to measure the vapour pressures at different temperatures of two crystalline ruthenium complexes: tris(1,1,1-trifluoro-2,4-pentanedionate)ruthenium(III) {Ru(tfacac)3}, between T =  350.20 K and T =  369.17 K and tris(1,1,1,5,5,5-hexafluoro-2,4-pentanedionate)ruthenium(III) {Ru(hfacac)3} between T =  299.15 K and T =  313.14 K. From the temperature dependence of the vapour pressure of the crystalline compounds, the standard molar enthalpies of sublimation were derived by the Clausius–Clapeyron equation and the molar entropies of sublimation at equilibrium pressures were calculated. By using an estimated value for the heat capacity differences between the gas and the crystal phases the standard, po =  105Pa, molar enthalpies, entropies, and Gibbs energies of sublimation at T =  298.15 K, were derived:  相似文献   

7.
The standard enthalpy of formation of several Pd–M alloys (M = In, Sn and Zn) has been measured using a high temperature direct drop calorimeter. The reliability of the calorimetric results has been determined and supported by using different analytical techniques: light optical microscopy, scanning electron microscopy equipped with electron probe microanalysis (EPMA with EDS detector) and X-ray powder diffraction analysis. The values of ΔfH (kJ/mol atoms) for the following phases were obtained for the formation in the solid state at 300 K: PdIn (49 at.%In): ?69.0 ± 1.0; Pd2In3 ?57.0 ± 1.0; Pd3In7: ?43.0 ± 1.0; PdSn2: ?50.0 ± 1.0; Pd2Zn9 (77 at.%Zn): ?33.7 ± 1.0; Pd2Zn9 (78 at.%Zn): ?34.0 ± 1.0; Pd2Zn9 (80 at.%Zn): ?35.0 ± 1.0. The results show exothermic values which increase from the Pd–Zn to the Pd–Sn and Pd–In systems; the data obtained have been discussed in comparison with those available in literature.  相似文献   

8.
《Polyhedron》2005,24(16-17):2437-2442
The synthesis and magnetic characterization of pyrazolato-bridged dinuclear complexes [{M(NCS)(4-Phpy)}2(μ-bpypz)2] (Hbpypz = 3,5-bis(2-pyridyl)-pyrazole; 4-Phpy = 4-phenylpyridine; M = Co2+ (1) and Fe2+ (2)) are described together with the X-ray crystal analysis of the cobalt complex. The structure of 1 shows that the desired coordination has been achieved with the cobalt atoms being coordinated to two bpypz to form the dimer. The X-ray diffraction patterns show 1 and 2 to be isomorphous at room temperature. 2 displays a single spin-crossover transition between the [HS–HS] and [LS–LS] states with Tc = 150 K.  相似文献   

9.
10.
The low-temperature heat capacity of NiAl2O4 and CoAl2O4 was measured between T = (4 and 400) K and thermodynamic functions were derived from the results. The measured heat-capacity curves show sharp anomalies peaking at around T = 7.5 K for NiAl2O4 and at T = 9 K for CoAl2O4. The exact cause of these anomalies is unknown. From our results, we suggest a standard entropy for NiAl2O4 at T = 298.15 K of (97.1 ± 0.2) J · mol?1 · K?1 and for CoAl2O4 of (100.3 ± 0.2) J · mol?1 · K?1.  相似文献   

11.
Calorimetric measurements performed in a wide temperature range on (NH4)3VO2F4 have shown the presence of four heat capacity anomalies at T1 = 438 K, T2 = 244 K, T3 = 210.2 K, T4 = 205.1 K associated with the first order phase transitions. In accordance with the permittivity behavior, the structural transformations are of nonferroelectric nature. Pressure dependence of the phase transition temperatures has been studied by DTA under pressure. The entropy of phase transitions is analyzed mainly in the framework of the orientational disordering of NH4+ and VO2F43? ions in a cubic phase.  相似文献   

12.
Surface tension and viscosity of molten vanadium were measured over a wide temperature range by the oscillating drop method in an electrostatic levitation furnace. Over the (2023 to 2517) K temperature range, the surface tension can be expressed as γ(T)/(10?3 N/m) = 1935 ? 0.27 {(T ? Tm)/K} with Tm = 2183 K. Over the same temperature span, the viscosity can be expressed as η(T)/(10?3 Pa · s) = 1.23exp[2.27 · 104/(RTK?1)], where R is the gas constant.  相似文献   

13.
Using mathematical model and experimental method, the thermal decomposition of hydrogen sulfide in membrane reactor with porous membrane which has Knudsen diffusion characteristics was investigated. With mathematical model, the effect of characteristics of membrane reactor and operating conditions on H2 concentration in the permeate chamber, yH2, which increases at higher reaction temperature, lower pressure and higher ratio of cross-sectional area of the permeate chamber to that of the reactor, was evaluated. The reaction experiments with ZrO2–SiO2 porous membrane were carried out under the following conditions: temperature T, 923–1023 K; pressure in the reactor pRT, 0.11–0.25 MPa absolute; pressure in the permeate chamber pPT, 5 kPa absolute and inlet flow rate of H2S f0H2S, 3.2×10−5–1.5×10−4 mol/s. At pRT=0.11 MPa and f0H2S=6.4×10−5, yH2 increased from 0.02 at T=923 K to 0.15 at 1023 K. With the experimental condition, pRT=0.11, T=1023 K and f0H2S=3.2×10−5, yH2 was 0.22. The experimental results were compared with the results of the mathematical analysis. The agreement between both the results is found rather good at a lower reacting temperature, but not so good at a higher reacting temperature.  相似文献   

14.
The Knudsen mass-loss effusion technique was used to measure the vapour pressures at different temperatures of the following crystalline dicarboxylic acids: succinic acid, between T =  360.11 K and T =  375.14 K; methylsuccinic acid, between T =  343.12 K and T =  360.11 K; 2,2-dimethylsuccinic acid, between T =  350.11 K, and T =  365.11 K; 2-methylglutaric acid, between T =  338.38 K and T =  347.63 K; and 2,2-dimethylglutaric acid between T =  342.18 K and T =  352.66 K. From the temperature dependence of the vapour pressure, the standard molar enthalpies of sublimation were derived by the Clausius–Clapeyron equation and the molar entropies of sublimation at equilibrium pressures were calculated. Using estimated values for the heat capacity differences between the gas and the crystal phases of the studied compounds, the standard, po =  105Pa, molar enthalpies, entropies and Gibbs energies of sublimation at T =  298.15 K, were derived:  相似文献   

15.
To obtain reliable thermodynamic data for Na2S(s), solid-state EMF measurements of the cell Pd(s)|O2(g)|Na2S(s), Na2SO4(s)|YSZ| Fe(s), FeO(s)|O2(g)ref| Pd(s) were carried out in the temperature range 870 < T/K < 1000 with yttria stabilized zirconia as the solid electrolyte. The measured EMF values were fitted according to the equation Efit/V (±0.00047) = 0.63650  0.00584732(T/K) + 0.00073190(T/K) ln (T/K). From the experimental results and the available literature data on Na2SO4(s), the equilibrium constant of formation for Na2S(s) was determined to be lg Kf(Na2S(s)) (±0.05) = 216.28  4750(T/K)−1  28.28878 ln (T/K). Gibbs energy of formation for Na2S(s) was obtained as ΔfG(Na2S(s))/(kJ · mol−1) (±1.0) = 90.9  4.1407(T/K) + 0.5415849(T/K) ln (T/K). By applying third law analysis of the experimental data, the standard enthalpy of formation of Na2S(s) was evaluated to be ΔfH(Na2S(s), 298.15 K)/(kJ · mol−1) (±1.0) = −369.0. Using the literature data for Cp and the calculated ΔfH, the standard entropy was evaluated to S(Na2S(s), 298.15 K)/(J · mol−1 · K−1) (±2.0) = 97.0.  相似文献   

16.
Four (solid–solid) phase transitions were detected in the temperature range of (9 to 300) K in polycrystalline [Cr(NH3)6](BF4)3 at TC1 = 240.7 K, TC2 = 108.0 K, TC3 = 91.9 K, and TC4 = 61.3 K by adiabatic calorimetry. The measurements by relaxation calorimetry were followed on lowering temperature from 20 K down to 0.35 K under six different external magnetic field values (9, 7, 5, 3, 1 and 0) T. For non-zero values of applied magnetic field well-defined Schottky anomaly appears. Magnetic heat capacity was calculated assuming the zero-field splitting for the decoupled Cr(III) ions. There is no discrepancy between the observed and calculated values. Isothermal magnetization curve recorded up to 5 T was measured at temperature of 1.8 K.  相似文献   

17.
The range of solid solubility of gadolinium in palladium was determined by X ray analysis. The lattice parameters showed a linear increase from pure palladium to Pd0.88Gd0.12. At higher gadolinium concentrations (0.12 < XGd < 0.25) the existence of a two phase region was observed, the compositions of the phases being represented by the formulas Pd0.88Gd0.12 and Pd3Gd. Magnetic measurements indicated ferromagnetic ordering at 6°K for Pd0.9Gd0.1 and at 4°K for Pd0.98Gd0.02. From the saturation magnetization at liquid helium temperatures the moment associated with a solute gadolinium atom was determined to be 6.5 μB. Measurements of the susceptibility on (Pd1−xAgx)0.93Gd0.07 alloys showed that gadolinium atoms in solid solution donate their valence electrons to the 4d and 5s band of palladium.  相似文献   

18.
19.
20.
《Polyhedron》2005,24(16-17):2269-2273
Two ion-pair compounds, consisting of 1-(4′-R-benzyl)pyridinium ([RBzPy]+, R = NO2 (1) and Br (2)) and [Ni(dmit)2] (dmit2− = 2-thioxo-1,3-dithion-4,5-dithiolato), have been synthesized and structurally characterized. The anions of [Ni(dmit)2] stack into dimers, which further construct into two-leg ladder through terminal S⋯S interactions in 1, lateral S⋯S interactions in 2. The weak H-bonding interactions of C–H⋯S were observed in 2, while only weak van de Waals interactions between anion and cations in 1. The magnetic susceptibilities measured in 2–300 K indicate AFM exchange interaction domination both two compounds. A peculiar magnetic transition at ∼100 K was observed in 1. An AFM ordering below ∼11 K was found in 2, and the best fit to magnetic susceptibility above 45 K in this compound, using a dimer model with s = 1/2, give rise to Δ/kB = 36.1 K, zJ = −0.91 K, C = 3.2 × 10−3 emu K mol−1 and χ0 = −4.0 × 10−6 emu mol−1 with g of 2.0 fixed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号