首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
2.
《Radiation measurements》2007,42(6-7):1025-1028
EPR dosimetry on bone samples was recently used for actual and suspected overexposures during radiotherapy treatments performed in Poland. In 2001 five breast-cancer patients undergoing radiotherapy in the Bialystok Oncology Center, Poland, were overexposed. The overexposure was due to a defective safety interlock and an obsolete safety system of the linear accelerator. For the three most exposed patients, pieces of rib bones removed during surgical reconstruction of the chest wall and skin transplantation allowed an estimation of the accident doses by electron paramagnetic resonance (EPR) spectrometry. The doses delivered during the accident were as high as 60–80 Gy. In 2005, a patient treated in Kielce Holy Cross Cancer Center exhibited similar deep necroses of the chest wall but 6 years following a “standard upper mantel fields” radiotherapy for Hodgkin's disease. In order to investigate the possible late effect of an overexposure as necrosis origin, the delivered dose was afterward estimated by EPR dosimetry performed on a rib sample.  相似文献   

3.
This paper reviews recent research on the application of the physical dosimetry techniques of electron paramagnetic resonance (EPR) and luminescence (optically stimulated luminescence, OSL, and thermoluminescence, TL) to determine radiation dose following catastrophic, large-scale radiological events. Such data are used in dose reconstruction to obtain estimates of dose due to the exposure to external sources of radiation, primarily gamma radiation, by individual members of the public and by populations. The EPR and luminescence techniques have been applied to a wide range of radiological studies, including nuclear bomb detonation (e.g., Hiroshima and Nagasaki), nuclear power plant accidents (e.g., Chernobyl), radioactive pollution (e.g., Mayak plutonium facility), and in the future could include terrorist events involving the dispersal of radioactive materials. In this review we examine the application of these techniques in ‘emergency’ and ‘retrospective’ modes of operation that are conducted on two distinct timescales. For emergency dosimetry immediate action to evaluate dose to individuals following radiation exposure is required to assess deterministic biological effects and to enable rapid medical triage. Retrospective dosimetry, on the other hand, contributes to the reconstruction of doses to populations and individuals following external exposure, and contributes to the long-term study of stochastic processes and the consequential epidemiological effects. Although internal exposure, via ingestion of radionuclides for example, can be a potentially significant contributor to dose, this review is confined to those dose components arising from exposure to external radiation, which in most studies is gamma radiation.The nascent emergency dosimetry measurement techniques aim to perform direct dose evaluations for individuals who, as members of the public, are most unlikely to be carrying a dosimeter issued for radiation monitoring purposes in the event of a radiation incident. Hence attention has focused on biological or physical materials they may have in their possession that could be used as surrogate dosimeters. For EPR measurements, in particular, this includes material within the body (such as bone or tooth biopsy) requiring invasive procedures, but also materials collected non-invasively (such as clippings taken from finger- or toenails) and artefacts within their personal belongings (such as electronic devices of which smart phones are the most common). For luminescence measurements, attention has also focused on components within electronic devices, including smartphones, and a wide range of other personal belongings such as paper and other polymer-based materials (including currency, clothing, bank cards, etc.). The paper reviews progress made using both EPR and luminescence techniques, along with their current limitations.For the longer-established approach of retrospective dosimetry, luminescence has been the most extensively applied method and, by employing minerals found in construction materials, it consequently is employed in dosimetry using structures within the environment. Recent developments in its application to large-scale radiation releases are discussed, including the atomic bomb detonations at Hiroshima and Nagasaki, fallout from the Chernobyl reactor and atmospheric nuclear bomb tests within the Semipalatinsk Nuclear Test Site and fluvially transported pollution within the Techa River basin due to releases from the Mayak facility. The developments made in applying OSL and TL techniques are discussed in the context of these applications. EPR measurements with teeth have also provided benchmark values to test the dosimetry models used for Chernobyl liquidators (clean-up workers), residents of Semipalatinsk Nuclear Tests Sites and inhabitants of the Techa River basin.For both emergency and retrospective dosimetry applications, computational techniques employing radiation transport simulations based on Monte Carlo code form an essential component in the application of dose determinations by EPR and OSL to dose reconstruction problems. We include in the review examples where the translation from the physical quantity of cumulative dose determined in the sampled medium to a dose quantity that can be applied in the reconstruction of dose to individuals and/or populations; these take into account the source terms, release patterns and the movements of people in the affected areas. One role for retrospective luminescence dosimetry has been to provide benchmark dose determinations for testing the models employed in dose reconstruction for exposed populations, notably at Hiroshima and Nagasaki. The discussion is framed within the context of the well-known radiation incidents mentioned above.  相似文献   

4.
In vivo electron paramagnetic resonance (EPR) tooth dosimetry provides a means for non-invasive retrospective assessment of personal radiation exposure. While there is a clear need for such capabilities following radiation accidents, the most pressing need for the development of this technology is the heightened likelihood of terrorist events or nuclear conflicts. This technique will enable such measurements to be made at the site of an incident, while the subject is present, to assist emergency personnel as they perform triage for the affected population. At Dartmouth Medical School this development is currently being tested with normal volunteers with irradiated teeth placed in their mouths and with patients who have undergone radiation therapy. Here we describe progress in practical procedures to provide accurate and reproducible in vivo dose estimates.  相似文献   

5.
The accurate determination of absorbed dose in small photon beams, especially for stereotactic radiation therapy, is a difficult task with commercially available detectors. As these small fields are characterized by high dose gradients, a lack of lateral particle equilibrium and a variation of energy spectra with beam sizes, a dosimeter with high resolution, tissue-equivalence and high precision is required. The new radiochromic film EBT2, which meets these criteria, was fully characterized in Institut de Radioprotection et Sûreté Nucléaire (IRSN) for this application. This type of film was tested with the reading system EPSON Dual Lens Perfection V700 flatbed scanner in transmission mode. Warm-up effects of the scanner were studied as well as the influence of the scanner light. Uniformity of unirradiated and irradiated EBT2 films in terms of pixel value was found to be respectively 0.3% (1 SD) and 0.5% (1 SD). An original, accurate and efficient radiochromic film dosimetry protocol was established. The overall uncertainty for dose measurement with EBT2 films using this protocol was estimated at less than 2% (1 SD). Encouraging measurements of output factors were performed on a Novalis system.  相似文献   

6.
There is now an increased need for accident dosimetry due to the increased risk of significant exposure to ionizing radiation from terrorism or accidents. In such scenarios, dose measurements should be made in individuals rapidly and with sufficient accuracy to enable effective triage. Electron paramagnetic resonance (EPR) is a physical method of high potential for meeting this need, providing direct measurements of the radiation-induced radicals, which are unambiguous signatures of exposure to ionizing radiation. For individual retrospective dosimetry, EPR in tooth enamel is a proven and effective technique when isolated teeth can be obtained. There are some promising developments that may make these measurements feasible without the need to remove the teeth, but their field applicability remains to be demonstrated. However, currently it is difficult under emergency conditions to obtain tooth enamel in sufficient amounts for accurate dose measurements. Since fingernails are much easier to sample, they can be used in potentially exposed populations to determine if they were exposed to life-threatening radiation doses. Unfortunately, only a few studies have been carried out on EPR radiation-induced signals in fingernails, and, while there are some promising aspects, the reported results were generally inconclusive. In this present paper, we report the results of a systematic investigation of the potential use of fingernails as retrospective radiation dosimeters.  相似文献   

7.
The radiation response of natural materials and domestic articles was investigated by EPR and TL to select suitable materials for retrospective dose assessment in accident dosimetry. The thermal stability and the influence of UV-exposure to the radiation-induced EPR centres were investigated. Based on a required precision of ±20% for dosimetry the lower limits of applicability of the materials were determined. The lowest dosimetry limits of 0.5 Gy were found using sugar, boiler scale and egg shells by EPR and 0.3 Gy by using TL with boiler scale. A list of materials found not to be applicable for retrospective radiation accident EPR dosimetry is also given.  相似文献   

8.
Estimation of the radiation released during nuclear accidents or radiological terrorist events is imperative for the prediction of health effects following such an exposure. In addition, in several cases there is a need to identify the prior presence of radioactive materials at buildings or sites (nuclear forensics). To this direction, several materials have been the research object of numerous studies the last decade in an attempt to identify potentially new retrospective/accidental/forensic dosimeters.However, the studies targeting biological materials are limited and their majority is mainly focused on the luminescence behavior of human biological material. Consequently, the use of such materials in retrospective dosimetry presumes the exposure of humans in the radiation field. The present work constitutes the first attempt to seek non-human biological materials, which can be found in nature in abundance or in/on other living organisms. To this end, the present work investigates the basic optically stimulated luminescence behavior of insect wings, which exhibit several advantages compared to other materials. Insects are ubiquitous, have a short life expectancy and exhibit a low decomposition rate after their death.Findings of the present study are encouraging towards the potential use of insects' wings at retrospective/accidental/forensic dosimetry, since they exhibit linear OSL response over a wide dose range and imperceptible loss of signal several days after their irradiation when they are kept in dark. On the other hand, the calculated lower detection limit is not low enough to allow their use as emergency dosimeters when individuals are exposed to non-lethal doses. In addition, wings exhibit strong optical fading when they are exposed to daylight and thus special care should be taken during the sampling procedure in order to use the wings as accidental/forensic dosimeters, by seeking (dead) insects in dark places, such as behind furniture, equipment or in air-shafts.Finally, a new single aliquot measurement protocol is also successfully tested on the wings for the dose estimation, while further work is in progress to validate it on other (heat-sensitive) materials as well.  相似文献   

9.
From the extensive investigations carried out since 1992 with the dosimetric ANPA-stack on 107 long-haul flights, it is possible to conclude that the cumulative dose per flight on a given route changes within less than 20% among different repeated routes, two different aircrafts (Boeings 747 and 767), and among different locations within the aircraft. In contrast to galactic cosmic rays, solar-flare radiation is totally unpredictable and extremely variable in terms of energy spectrum, intensity, direction, duration and starting time.

Most of the dosimetric systems used to date for the galactic cosmic rays may not be appropriate for solar-flare-radiation dosimetry. For this reason, different dosimetric systems have been investigated for both the retrospective and prospective dosimetry of solar flares. While waiting for the rare solar flare to occur, these dosimetric systems could be used for the validation of the computer-estimated route doses and/or for dosimetry in space, where frequent measurements of solar-flare events are needed.  相似文献   


10.
《Radiation measurements》2007,42(6-7):1256-1260
This paper briefly reviews the optically stimulated luminescence (OSL) properties of dental enamel and discusses the potential and challenges of OSL for filling the technology gap in biodosimetry required for medical triage following a radiological/nuclear accident or terrorist event. The OSL technique uses light to stimulate a radiation-induced luminescence signal from materials previously exposed to ionizing radiation. This luminescence originates from radiation-induced defects in insulating crystals and is proportional to the absorbed dose of ionizing radiation. In our research conducted to date, we focused on fundamental investigations of the OSL properties of dental enamel using extracted teeth and tabletop OSL readers. The objective was to obtain information to support the development of the necessary instrumentation for retrospective dosimetry using dental enamel in laboratory, or for in situ and non-invasive accident dosimetry using dental enamel in emergency triage. An OSL signal from human dental enamel was detected using blue, green, or IR stimulation. Blue/green stimulation associated with UV emission detection seems to be the most appropriate combination in the sense that there is no signal from un-irradiated samples and the shape of the OSL decay is clear. Improvements in the minimum detection level were achieved by incorporating an ellipsoidal mirror in the OSL system to maximize light collection. Other possibilities to improve the sensitivity and research steps necessary to establish the feasibility of the technique for retrospective assessment of radiation exposure are also discussed.  相似文献   

11.
The scope of application of ESR spectroscopy has greatly expanded with the advent of its widespread use in radiation exposure dating around 1980 and its use in retrospective dosimetry since the Chernobyl disaster in 1986. Few fields of study are of such breadth that they span topics as diverse as dating of human origins, volcanic activity, cave deposits and earthquakes, while also providing prognoses for radiation accident victims. Between 1945 and 1975 ESR was mainly used to define the nature of paramagnetic defects in crystalline and amorphous materials, which laid the foundation for its use in applied areas in Quaternary geology, archaeometry and accident dosimetry. This review chronicles the development of the use of ESR in applied science since 1975, with particular emphasis on the state of the art in the period 1987–1997. The first part of the review focuses mainly on the range of applications for datable materials: tooth enamel (Section 2), calcite (Section 3) and quartz (Sections 4–9), while the second part comprises the areas of retrospective dosimetry (Section 10) and new applications (Section 11). The review concludes (Appendix A) with an introduction to the physical basis and assumptions involved in ESR dating, and compilations of valuable reference works for students and workers in this field.  相似文献   

12.
Passage of 1–400 keV photons through thin layers (0.001–1.0 mm) of biological matter was simulated. Monte Carlo simulation was performed using the GEANT4.9 software package. The energy dependences of the absorbed dose and number of ionizing events and the number of ionizing events per unit absorbed dose were obtained. It was shown that the dependences in many respects are determined by the thickness of layers. Assuming that equal numbers of ionizing events in the layer cause equal biological effects, energy dependences of relative biological effectiveness of photons in the energy range studied have been estimated.  相似文献   

13.
Boron neutron capture therapy (BNCT) is a cancer radiotherapy that uses epithermal and thermal neutron beams. The determination of the absorbed dose in healthy tissue, separating the various dose contributions having different radiobiological effectiveness (RBE) is of great importance for therapy planning. However, a standard code of practice has not yet been established because suitable methods for dosimetry in BNCT are still in progress.A study about the characterization of the epithermal column of the LVR-15 research reactor in ?e? (CZ) has been performed, in particular concerning the fast-neutron dose. This dose is not negligible and its determination is important owing to its high RBE. Fast-neutron and photon dose distributions in a water phantom have been measured by means of Fricke gel layer dosimeters. Even if gel layer dosimetry is not yet standardized, it is presently the only method for obtaining images of each dose contribution in BNCT neutron fields.The results were compared with values measured with thermoluminescence detectors, twin ionization chambers data taken from literature and Monte Carlo simulations.  相似文献   

14.
A method to determine the absorbed radiation dose that is based on the spin-resonance dosimetry is suggested. It rests on the fact that under irradiation additional centers that absorb UHF radiation are generated in substance. This leads to a change in the time of longitudinal relaxation of a Zeeman subsystem and dipole-dipole reservoir as well as in the time of transverse relaxation because of the dipole-dipole interaction, which in turn causes a change in the shape of the line and in the saturation parameter. It is possible to determine the minimum absorbed dose at which the minimum deformation of the shape of the line is registered. A method is also suggested to determine an absorbed dose in the absence of absorbing centers in the substance before irradiation. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 72, No. 3, pp. 335–338, May–June, 2005.  相似文献   

15.
A radiation dose distribution that optimally conforms to the target volume is of major interest for stereotactic radiotherapy. For this purpose treatment plans have to be verified experimentally before transferring to the patient. The requirements regarding dose accuracy and spatial resolution can be fulfilled with tissue equivalent polymer gel dosimeters which offer the possibility to visualize 3D dose distributions. Herewith, dosimetry can be performed by the spin-spin relaxation rate R2 which varies with the absorbed dose. In this work, different MR measurement techniques were evaluated: The standard Carr-Purcell-Meiboom-Gill (CPMG) method, a modified Turbo-Spin-Echo (TSE) sequence, and a modified Turbo-Gradient-Spin-Echo (TGSE) sequence. Experiments were performed both with a homogeneous water phantom and an irradiated polymer gel. The results show that TGSE and especially TSE are suited well for MR polymer gel dosimetry: The acquisition time of both techniques can be reduced in comparison to CPMG by a factor of 5. The accuracy of dose determination for doses between 2 Gy and 13 Gy lies between 5.6% and 2.0% (TSE), 9.0% and 3.2% (TGSE), and 7.9% and 2.7% (CPMG). These investigations show that especially TSE can be handled as a substitute or at least an alternative to CPMG for the verification of treatment plans in stereotactic radiotherapy.  相似文献   

16.
The dosimetry telescope (DOSTEL) was flown on the MIR orbital station during October 1997-January 1998. The mission average contributions to the absorbed dose rates (in water) were 126 +/- 4 microGy/d and 121 +/- 13 microGy/d for the GCR and the SAA component, respectively. The mean quality factors (ICRP60) deduced from the LET-spectra are 3.5 +/- 0.2 (GCR) and 1.3 +/- 0.1 (SAA). Separate LET spectra and temporal variations of the absorbed dose rates and of the mean quality factors are presented for these two radiation components as well as for solar energetic particles of the November 6, 1997 event.  相似文献   

17.
《Radiation measurements》2007,42(6-7):1063-1074
A nuclear incident or major release of radioactive materials likely would result in vast numbers of patients, many of whom would require novel therapy. Fortunately, the numbers of radiation victims in the United States (USA) have been limited to date. If a mass-casualty situation occurs, there will be a need to perform rapid, accurate dose estimates and to provide appropriate medications and other treatment to ameliorate radiation injury.The medical management of radiation injury is complex. Radiation injury may include acute radiation sickness (ARS) from external and/or internal radiation exposure, internal organ damage from incorporated radioactive isotopes, and cutaneous injury. Human and animal data have shown that optimal medical care may nearly double the survivable dose of ionizing radiation. Current treatment strategies for radiation injuries are discussed with concentration on the medical management of the hematopoietic syndrome.In addition, priority areas for continuing and future research into both acute deterministic injuries and also long-term stochastic sequelae of radiation exposure have been identified. There are several near-term novel therapies that appear to offer excellent prognosis for radiation casualties, and these are also described.  相似文献   

18.
Intrinsic dosimetry is the method of measuring total absorbed dose received by the walls of a container holding radioactive material. By considering this dose in tandem with the physical characteristics of the radioactive material housed within the container, this method can provide enhanced pathway information for interdicted radioactive samples. Thermoluminescence (TL) dosimetry was used to measure ionizing radiation dose effects on stock borosilicate glass. Differences in TL glow curve shape and intensity were observed for glasses from different geographical origins. The different TL signatures strongly correlated with the concentration of alkaline earth metals and the ratio of sodium to the total amount of alkali metal present in the borosilicate glass.  相似文献   

19.
Radiochromic films (RCF), also called GafChromic? films, represent a performant material for accurate quantitative radiation dosimetry. Their compositions allow high dose sensitivity and fewer environmental dependence, giving a good feedback to the absorbed dose value and to the active media absorption, turning color upon being irradiated. The RCF take into account their reduced response near the Bragg peak due to a high linear energy transfer (LET). HD-810 GafChromic? films are tissue-equivalent, have easy optical readings and can be employed for ion dosimetry in radio diagnostic and therapy and for industrial applications. Such dosimeters were employed at Tandetron-Nuclear Physics Institute (?e?, Czech Republic) to study the responses of helium, proton and carbon beams, commonly employed in radiotherapy and microelectronics. The sensitivity of the detector is low enough to measure multiple-beam exposures. The induced effects by the ions in the energy range of 600?keV to 2.0?MeV were investigated in terms of optical absorbance, measured in the irradiated active region of the polymer. The employed ion dose range was between 40?Gy and 2.5?kGy. The experimental results show that the absorbance increases with the irradiation time (i.e. with the absorbed dose). The absorbance induced in the radio chromic film was measured at 673?nm, at which is observed the highest sensitivity of the films. Such data, together with the dose linearity and the dependence on the ion stopping power will be presented and discussed.  相似文献   

20.
This paper presents the 1D, 2D & 3D dose distribution determination method using the Real Time Dosimetry (RTD) system in NILPRP Secondary Standard Dosimetry Laboratory (SSDL). MULTIDATA has extended the RTD system to perform traditional film dosimetry tasks directly on images. Image-based film dosimetry provided the benefits of traditional film analysis in a faster, more intuitive process for commissioning, quality assurance and beam data libraries in radiation beam applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号