首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new layered compound, K4Mn3(HPO4)4(H2PO4)2 (1), has been synthesized under hydrothermal conditions. It crystallizes in the monoclinic space group P21/n with a = 8.874(2) Å, b = 6.554(1) Å, c = 18.075(4) Å, and β = 93.39(3)°. The structure consists of zigzag [Mn3O14]n chains of edge-sharing MnO6 octahedrons and MnO7 pentagonal bi-pyramids, which form layers of formula [Mn3(HPO4)4(H2PO4)2]4? in the ab plane via H2PO4 and HPO4 units with vertex-sharing. Potassium ions lie between these layers. Magnetic measurements indicate Curie–Weiss behavior above 6 K for 1. A Heisenberg model, with alternating exchange interactions J1J1J2… within the chain and exchange interactions J3J3… between the chains, is proposed to describe the magnetic behavior.  相似文献   

2.
《Solid State Sciences》2007,9(7):619-627
Three new crystal structures, isotypic with β-Zr2O(PO4)2, have been resolved by the Rietveld method. All crystallize with an orthorhombic cell (S.G.: Cmca) with a = 7.1393(2) Å, b = 9.2641(2) Å, c = 12.5262(4) Å, V = 828.46(4) Å3 and Z = 8 for Th(OH)PO4; a = 7.0100(2) Å, b = 9.1200(2) Å, c = 12.3665(3) Å, V = 790.60(4) Å3 and Z = 8 for U(OH)PO4; a = 7.1691(3) Å, b = 9.2388(4) Å, c = 12.8204(7) Å, V = 849.15(7) Å3 and Z = 4 for Th2O(PO4)2. By heating, the M(OH)PO4 (M = Th, U) compounds condense topotactically into M2O(PO4)2, with a change of the environment of the tetravalent cation that lowers from 8 to 7 oxygen atoms. The lower stability of Th2O(PO4)2 compared to that of U2O(PO4)2 seems to result from this unusual environment for tetravalent thorium.  相似文献   

3.
A new zero-dimensional (0D) aluminophosphate monomer [dl-Co(en)3]2[Al(HPO4)2(H1.5PO4)2(H2PO4)2](H3PO4)4 (designated AlPO-CJ38) with Al/P ratio of 1/6 has been solvothermally prepared by using racemic cobalt complex dl-Co(en)3Cl3 as the template. The Al atom is octahedrally linked to six P atoms via bridging oxygen atoms, forming a unique [Al(HPO4)2(H1.5PO4)2(H2PO4)2]6? monomer. Notably, there exists intramolecular symmetrical O?H?O bonds, which results in pseudo-4-rings stabilized by the strong H-bonding interactions. The structure is also featured by the existence of four different types of monophosphates that have been confirmed by 31P NMR and 1H NMR spectra. The crystal data are as follows: AlPO-CJ38, [dl-Co(en)3]2[Al(HPO4)2(H1.5PO4)2(H2PO4)2](H3PO4)4, M = 1476.33, monoclinic, C2/c (No. 15), a = 36.028(7) Å, b = 8.9877(18) Å, c = 16.006(3) Å, β = 100.68(3)°, U = 5093.2(18) Å3, Z = 4, R1 = 0.0509 (I > 2σ(I)) and wR2 = 0.1074 (all data). CCDC number 689491.  相似文献   

4.
We have extended our research interest on titanium oxyphosphates (MII(TiO)2(PO4)2, with MII = Mg, Fe, Co, Ni, Cu, Zn) to vanadium oxyphosphates MII(VIVO)2(PO4)2 (MII = Co, Ni). For each compound two phases, named α and β according to synthesis conditions, have been stabilized at room temperature, then characterized. The four crystal structures M(VO)2(PO4)2 (α and β for M = Co, Ni) have been determined in monoclinic P21/c space group using X-ray single crystals diffraction data. Structure of the α phase is derived from the Li(TiO)(PO4) (orthorhombic Pnma) and LiNi0.50(TiO)2(PO4)2 (monoclinic P21/c) types, with cell parameters: a = 6.310(1) Å, b = 7.273(1) Å, c = 7.432(1) Å, β = 90.43(1)° for M = Co, and a = 6.297(2) Å, b = 7.230(2) Å, c = 7.421(2) Å, β = 90.36(2)° for M = Ni. Structure of the β phase is derived from the Ni(TiO)2(PO4)2-type (monoclinic P21/c) with cell parameters: a = 7.2742(2) Å, b = 7.2802(2) Å, c = 7.4550(2) Å, β = 120.171(2)° for M = Co, and a = 7.2691(2) Å, b = 7.2366(2) Å, c = 7.4453(2) Å, β = 120.231(2)° for M = Ni. All these structures consist of a three dimensional (3D) framework built up of infinite chains of tilted corner-sharing [VO6] octahedra, cross-linked by corner-sharing [PO4] tetrahedra. The M2+ ion (M = Co, Ni) is located in a triangular based antiprism which shares faces with two [VO6] octahedra. Structural filiation is discussed based on a common structural unit, a sheet where divalent cations M2+ (M = Co, Ni) are inserted. A thermal study of the α ? β transition is also presented.  相似文献   

5.
《Polyhedron》2007,26(9-11):2121-2125
The hybrid organo-inorganic compounds [Cu4(bipy)4V4O11(PO4)2]nH2O (n  5) (1), [Cu2(phen)2(PO4)(H2PO4)2(VO2) · 2H2O] (2) and [Cu2(phen)2(O3PCH2PO3)(V2O5) (H2O)]H2O (3) which present different bridging forms of the phosphate/phosphonate group, show different bulk magnetic properties. We herein analyze the magnetic behaviour of these compounds in terms of their structural parameters. We also report a theoretical study for compound (1) assuming four different magnetic exchange pathways between the copper centres present in the tetranuclear unit. For compound (1) the following J values were obtained J1 = +3.29; J2 = −0.63; J3 = −2.23; J4 = −46.14 cm−1. Compound (2) presents a Curie–Weiss behaviour in the whole range of temperature (3–300 K), and compound (3) shows a maximum for the magnetic susceptibility at 64 K, typical for antiferromagnetic interactions. These data where fitted using a model previously reported in the literature, assuming two different magnetic exchange pathways between the four copper(II) centres, with J1 = −30.0 and J2 = −8.5 cm−1.  相似文献   

6.
《Solid State Sciences》2007,9(3-4):258-266
The thermal study of Cu0.50TiO(PO4), by X-ray diffraction and DSC, shows a phase transition α  β with a hysteresis (∼600 °C during heating; ∼300 °C during cooling). Single crystals have been obtained for the α-phase but the β-phase can only be stabilised at room temperature as a powder mixture with α. Structural characterization of the β-variety has been done with diffraction data (X-ray Cu Kα1 and neutrons) using a powder rich in β-phase (α(20%) + β(80%)). A monoclinic cell (a = 7.1134(7) Å; b = 7.7282(7) Å; c = 7.3028(7) Å; β=119.30(1)°; V = 350.1(1) Å3) has been found for β-phase, space group P21/c. An “ab initio” structure determination has been done, and the Rietveld refinement leads to cRwp = 0.150 and RB = 0.041. The results from the X-ray data were confirmed by refinements from neutron data.Similarly to the α-phase, the structure of β-Cu0.50TiO(PO4) can be described as a TiOPO4 framework constituted of chains of tilted corner-sharing [TiO6] octahedra running parallel to the c axis and cross linked by [PO4] tetrahedra. Ti atoms are displaced from the centres of the octahedral units, leading to long (2.27 Å) and short (1.73 Å) Ti–O(1) bonds. The [CuO6] octahedra exhibit a typical Jahn–Teller distorted coordination with four short equatorial Cu–O bonds (2 × 1.93 Å and 2 × 2.06 Å), and two longer apical Cu–O bonds (2 × 2.33 Å). The two longer Cu–O bonds are almost parallel to the b axis.The transition from the α to the β-phase is characterized by a “rocking” of the Jahn–Teller elongation from the (a,c) plane to the b direction accompanied by a relatively strong expansion of the cell volume.  相似文献   

7.
Single crystals of a new phosphate AgCr2(PO4)(P2O7) have been prepared by the flux method and its structural and the infrared spectrum have been investigated. This compound crystallizes in the monoclinic system with the space group C2/c and the parameters are, a = 11.493 (3) Å, b = 8.486 (3) Å, c = 8.791 (2) Å, β = 114.56 (2)°, V = 779.8 (3) Å3and Z = 4. Its structure consists of CrO6 octahedra sharing corners with P2O7 units to form undulating chains extending infinitely along the [110] direction. These chains are connected by the phosphate tetrahedra giving rise to a 3D framework with six-sided tunnels parallel to the [101] direction, where the Ag+ ions are located. The infrared spectrum of this compound was interpreted on the basis of P2O74? and PO43? vibrations. The appearance of νsP–O–P in the spectrum suggests a bent P–O–P bridge for the P2O74? ions in the compound, which is in agreement with the X-ray data. The electrical measurements allow us to obtain the activation energy of (1.36 eV) and the conductivity measurements suggest that the charge carriers through the structure are the silver captions.  相似文献   

8.
《Solid State Sciences》2007,9(8):672-677
A cerium(IV) phosphate has been prepared using precipitation methods and its structure has been solved by single crystal X-ray diffraction (R1 = 0.0292 for 3092 reflections with I>2σ(I) and wR2 = 0.0540). Ce(H2O)(PO4)3/2(H3O)1/2(H2O)1/2 crystallises in the monoclinic space group C2/c (a = 15.7058(17) Å, b = 9.6261(9) Å, c = 10.1632(4) Å, ß = 121.623(7)°, and V = 1308.4 (2) Å3). Its structure is based on a negatively charged 3D framework, made of cerium atoms connected by PO4 tetrahedra. There are two types of PO4 units; one shares only corners with the cerium coordination polyhedra while the other one shares edges and corners. This structure also includes hydronium cations, to balance the framework charge, and water molecules. One special feature of this 3D framework is the formation of interconnected tunnels which extend along the c axis and contain the hydronium cations and the water molecules. This open framework and the presence of cationic species in the tunnels are in perfect agreement with the previously reported ion exchange properties.  相似文献   

9.
A new piperazinium dihydrogen orthophosphate, C4H12N2(H2PO4)2 was discovered and characterized by combining information from X-ray diffraction, 31P CP/MAS NMR and thermal analysis (TG/DTA). The compound C4H12N2(HPO4)·H2O, was also studied in order to compare these two similar materials. The hydrothermal stability is investigated for the system: 1.0 C4H10N2: n H3PO4: 55–60 H2O, 0.5 < n < 3. The reaction mixtures with pH in the range 1.6–8.4 were placed at a fixed temperature in the range 20–180 °C for ca. 5 days. C4H12N2(H2PO4)2 was obtained when n > ca. 2. A crystal of piperazinium dihydrogen phosphate, C4H12N2(H2PO4)2 was structurally investigated using X-ray diffraction: triclinic, space group P1¯, a = 7.023(2), b = 7.750(3), c = 12.203(4) Å, α = 84.668(7), β = 81.532(7) and γ = 63.174(6)°, V = 586.0(4) Å3 and Z = 2. The reactivity of C4H12N2(H2PO4)2 was investigated by systematic solvothermal syntheses.  相似文献   

10.
Compound Cu2(H2O)2{O3PCH2N(C2H4)2NCH2PO3} (1) has a pillared layered structure in which the organic groups of N,N′-piperazinebis(methylenephosphonate) are sandwiched between the inorganic layers. Compared with other copper phosphonates with layered or pillared layered structures, the inorganic layer in 1 is unique in that each {CPO3} tetrahedron is corner-shared with three {CuO4N} square pyramids through three oxygen donors. Ferromagnetic interactions are mediated between the metal centers. Crystal data: Pbca, a=10.0830(16) Å, b=9.4517(15) Å, c=13.218(2) Å, V=1259.7(3) Å3, Z=4.  相似文献   

11.
The Raman spectra for Sr3(PO4)2 and Ba3(PO4)2 were investigated in the temperature range from 80 to 1623 K at atmospheric pressure. An unexpected melting of each sample was observed around 1573–1583 K in this study. In the temperature range from 80 to 1323 K, the Raman wavenumbers of all observed bands for Sr3(PO4)2 and Ba3(PO4)2 continuously decrease with increasing temperature. A quantitative analysis on the wavenumbers of Raman bands for both samples reveals that the ν3 antisymmetric stretching vibrations show the strongest temperature dependence and the ν2 symmetric bending vibration displays the weakest temperature dependence. The effects of cations on Raman bands are discussed. The reason for the unexpected melting of both samples is mainly attributed to the significant contribution from excess surface energy and the grain-boundary energy that has apparently lowered the melting points of the small samples, i.e., Gibbs–Thomson effect.  相似文献   

12.
Strontium phosphate apatites with compositions Sr5(PO4)3Zn0.15O0.3(OH)0.7, Sr5(PO4)3Ni0.2O0.4(OH)0.6, and Sr5(PO4)3Co0.2O0.5(OH)0.4 were synthesized by solid state reaction at 1400 °C in air. The samples were characterized by powder X-ray diffraction, EDX analysis, magnetic measurements and IR spectroscopy. The crystal structures were refined by the Rietveld method in the space group P63/m with lattice constants a = 9.7499(1), 9.7722(1), 9.7507(1) Å and c = 7.3066(1), 7.2962(1), 7.2988(1) Å, respectively. The 3d-metal atoms were found randomly distributed in the hexagonal channels formally substituting hydrogen in the initial hydroxyapatite. Zn and Ni atoms were twofold coordinated by oxygen atoms such that the linear O–M–O groups formed in the channel separated by the OH groups. Co atom was shifted from the channel center giving the O–Co–O fragment distorted from a linear geometry probably due to the additional coordination by the oxygen atoms of the phosphate groups.  相似文献   

13.
《Solid State Sciences》2007,9(2):149-154
The mild-condition syntheses, single-crystal structures and properties of H3N(CH2)5NH3·Zn3(HPO3)4 and β-H3N(CH2)6NH3·Zn3(HPO3)4 are reported. Both are constructed from (3,4)-nets of ZnO4 tetrahedra and HPO3 pyramids, sharing vertices to result in three-dimensional anionic open-frameworks. In both materials, the organic species interacts with the framework by way of N–H⋯O bonds. Crystal data: H3N(CH2)5NH3·Zn3(HPO3)4, Mr = 620.22, orthorhombic, Pccn (No. 56), a = 9.5364 (9) Å, b = 21.8015 (19) Å, c = 9.1118 (7) Å, V = 1894.4 (3) Å3, Z = 4, R(F) = 0.044, wR(F2) = 0.111. β-H3N(CH2)6NH3·Zn3(HPO3)4, Mr = 634.25, monoclinic, P21/n (No. 14), a = 8.7627 (1) Å, b = 13.8117 (2) Å, c = 16.6187 (3) Å, β = 92.680 (1)°, V = 2009.12 (5) Å3, Z = 4, R(F) = 0.072, wR(F2) = 0.187.  相似文献   

14.
《Solid State Sciences》2007,9(7):644-652
Na2Cu(PO2NH)4·7H2O and KxNa2−xCu(PO2NH)4·7H2O (x  0.5) were synthesized by gel crystallization in sodium silicate gels. The crystal structures were solved by single-crystal X-ray methods and found to be isotypic (Pnma, Z = 4; Na2Cu(PO2NH)4·7H2O: a = 627.5(2) pm, b = 1456.0(3) pm, c = 1900.5(4) pm, R1 = 0.0352; K0.47Na1.53Cu(PO2NH)4·7H2O: a = 632.2(2) pm, b = 1460.0(3) pm, c = 1936.4(4) pm, R1 = 0.0345). The P4N4 rings of the tetrametaphosphimate anion exhibit a distorted chair-2 conformation with admixtures of saddle and crown conformation. The M+ ions are six- and sevenfold coordinated by oxygen atoms, the Cu2+ ions are fivefold coordinated, respectively. The MO7 and the CuO5 units form pairs of face-sharing polyhedra, which are connected by common corners forming chains and are further interconnected by tetrametaphosphimate anions, forming a three-dimensional network structure with channels along [100] and [010]. The MO6 units form chains of face-sharing polyhedra, which are situated in the channels along [100]. Extended hydrogen bonding reinforces the three-dimensional framework structure of the compounds. 23Na-MAS NMR experiments were conducted to verify the K/Na distribution on the M sites derived from the X-ray crystal structure refinement.  相似文献   

15.
A novel zinc diphosphonate, Zn[HO3PCH2(C6H4)CH2PO3H] (1) was synthesized from tetraethyl para-xylylenediphosphonate, Et2O3PCH2C6H4CH2PO3Et2, and Zn (AcO)2·2H2O under solvothermal conditions. The structure of compound 1 was determined by single-crystal X-ray diffraction, which reveals that the structure crystallizes in the monoclinic space group C2/c (No. 15), with a = 22.4844(19) Å, b = 6.4361(5) Å, c = 8.1194(7) Å, β = 102.595(2)°, V = 1146.70(16) Å3, T = 298(2) K, Z = 8. The novel three-dimensional (3D) construction is simply built up from linear inorganic chains of corner-sharing four-rings of tetrahedral [ZnO4] and [PO3C] which connected adjacent chains by the organophosphorus ligand para-xylylenediphosphonate. The framework has 10 Å × 4 Å (containing the van der Waals radii of atoms) channels running along the b-axis.  相似文献   

16.
17.
《Solid State Sciences》2001,3(6):677-687
Partial substitution of P by As, leading to the solid solution CsH2(PO4)1−x(AsO4)x, with x=0.28 (abbreviated as CDAP) has been shown. The structural characteristics of the crystals were analyzed by means of X-ray diffraction, which revealed that the new title compound is nearly isomorphous with the monoclinic phase of CsH2PO4 (CDP). The structure was solved from 796 independent reflections with R1=0.0292 and Rw2=0.0702, refined with 59 parameters. The following results have been obtained: space group P21, a=4.9250(4) Å, b=6.4370(3) Å, c=7.9280(6) Å, β=107.316(3)°, V=239.94(3) Å3, Z=2 and ρcal=3.349 g cm−3. The hydrogen bonds are clearly distinguished in the electron density maps which display distributions corresponding to order of protons. The shorter bond (2.452(4) Å), links the phosphate–arsenate groups into chains running along the b-axis and the longer bond (2.531(3) Å), crosslinks the chains to form (001) layers. The Raman and infrared spectra of CDAP recorded at room temperature in the frequency ranges 15–1200 cm−1 and 400–4000 cm−1, respectively, confirm the presence of PO3−4 and AsO3−4 groups in the crystal. Differential scanning calorimetry traces show three phase transitions at 333, 449 and 490 K in this material, which are characterized by X-ray powder diffraction at high temperature.  相似文献   

18.
《Comptes Rendus Chimie》2014,17(12):1237-1241
In order to enhance our knowledge about the Ca10−xLax(PO4)6−x(SiO4)xF2 (0  x  6) series, whose chemical stability decreases as the substitution degree increases, Ca6La4(PO4)2(SiO4)4F2 and Ca4La6(SiO4)6F2 compounds were prepared through a solid-state reaction. Their ionic conductivity was measured by impedance spectroscopy. The results indicate that the conductivity increases with substitution, and fits the Arrhenius equation over the investigated temperature range. At high temperatures, a change in the activation energy has been observed, which has been related to the nature of the Ca/La–F bond, i.e. to the polarizability of lanthanum.  相似文献   

19.
Crystal structure of a new natural strontium, iron and aluminium hydroxyphosphate (lulzacite): Sr2Fe(Fe0.63Mg0.37)2Al4(PO4)4(OH)10. The crystal structure of a new natural strontium, iron and aluminium hydroxyphosphate (lulzacite) has been solved through an X-ray study of a single crystal:– symmetry: triclinic (P1̄);– unit cell parameters: a=5.457(1) Å, b=9.131(2) Å, c=9.769(2) Å, α=108.47(3)°, β=91.72(3)° and γ=97.44(3);– structural formula: (Sr0.96Ba0.04)2Fe(Fe0.63Mg0.37)2Al4[(P0.98V0.02)O4]4(OH)10 (Z=1).The structure presents along the b axis the alternation, on one hand of infinite chains of edge sharing octahedra (one Fe2+O6 and an AlO6 pair), and, on the other hand, of trimers with a central AlO6 octahedron framed by two mixed (Fe2+,Mg)O6 octahedra. Trimers and chains are linked by the corners of one AlO6 octahedron and two PO4 tetrahedra. Strontium ions are located in the channels of the structure. This structure is isotypic with that of jamesite, a lead arsenate. Similar octahedral building blocks are present in other mineral species: trimers in ludlamite (iron phosphate), chains in various hydroxysalts. © 2000 Académie des sciences / Éditions scientifiques et médicales Elsevier SASlulzacite / hydroxyphosphate / phosphate / strontium / iron / aluminium  相似文献   

20.
A nonmagnetic compound, [NO2BzPy][Cu(mnt)2] (mnt2? = maleonitriledithiolate; NO2BzPy+ = 1-(4′-nitrobenzyl)pyridinium), is isostructural with [NO2BzPy][Ni(mnt)2], which is a quasi-1D spin system and exhibits a spin-Peierls-like transition with J = 192 K in the gapless state and spin energy gap = 738 K in the dimerization state, respectively. Further, five nonmagnetic impurity doped compounds [NO2BzPy][CuxNi1?x(mnt)2] (x = 0.04–0.74) were prepared, and their crystal structures as well as magnetic properties were investigated. The nonmagnetic doping causes the suppression of the spin transition with an average rate of 139(13) K/percentage of dopant concentration, and the transition collapse is estimated at around x > 0.5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号