首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
We report the results of complex study of luminescence and dynamics of electronic excitations in K2Al2B2O7 (KABO) crystals obtained using low-temperature luminescence-optical vacuum ultraviolet spectroscopy with sub-nanosecond time resolution under selective photoexcitation with synchrotron radiation. The paper discusses the decay kinetics of photoluminescence (PL), the time-resolved PL emission spectra (1.2–6.2 eV), the time-resolved PL excitation spectra and the reflection spectra (3.7–21 eV) measured at 7 K. On the basis of the obtained results three absorption peaks at 4.7, 5.8 and 6.5 eV were detected and assigned to charge-transfer absorption from O2? to Fe3+ ions; the intrinsic PL band at 3.28 eV was revealed and attributed to radiative annihilation of self-trapped excitons, the defect luminescence bands at 2.68 and 3.54 eV were separated; the strong PL band at 1.72 eV was revealed and attributed to a radiative transition in Fe3+ ion.  相似文献   

2.
The photoluminescence (PL) properties of nano- and micro-crystalline Hg1?xCdxTe (x≈0.8) grown by the solvothermal method have been studied over the temperature range 10–300 K. The emission spectra of the samples excited with 514.5 nm Ar+ laser consist of five prominent bands around 0.56, 0.60, 0.69, 0.78 and 0.92 eV. The entire PL band in this NIR region is attributed to the luminescence from defect centers. The features like temperature independent peak energy and quite sensitive PL intensity, which has a maximum around 50 K is illustrated by the configuration coordinate model. After 50 K, the luminescence shows a thermal quenching behavior that is usually exhibited by amorphous semiconductors, indicating that the defects are related to the compositional disorder.  相似文献   

3.
It is reported that Auger-free (AF) luminescence appears with two bands at 4.5 and 6.3 eV in Rb2ZnCl4. This luminescence originates from a radiative transition of the Cl 3p valence electrons into the Zn 3d outermost-core holes. The present work is the first observation of AF luminescence due to interatomic p–d transitions in halide crystals. The appearance of two AF luminescence bands suggests the existence of two types of AF transitions following core hole creation. A largely Stokes-shifted luminescence band is also found to appear at 1.9 eV. This band has an excitation threshold at the fundamental absorption edge, and is ascribed to the radiative decay of a self-trapped exciton.  相似文献   

4.
The radioluminescence (RL) of synthetic quartzes (GEMMA Quartz & Crystal Company) has been measured at room temperature. Some samples were treated by electrodiffusion (“sweeping”) in order to change the concentrations of alkali ions, mainly Li+ and Na+, which in quartz are known to be linked to Al ions, substitutional for Si ions.The RL emission spectra show evidence of a role of alkali ions in affecting some specific emissions. All the spectra could be analysed as composed of four bands in the blue and UV region. Specifically, the well known blue emission at around 470 nm was seen to be composed by two bands at 430 nm (2.86 eV) and at 485 nm (2.53 eV). Effects of irradiation, during the RL measurements, were clearly seen only in the “Li swept in” sample, namely an increase in the 485 nm band intensity and a decrease in the 430 nm band one. The previously reported UV emission was detected at 355 nm (3.44 eV) in all the samples, being the most intense band in the “swept out” sample. A further UV emission was detected at 315 nm (3.94 eV), more intense in untreated samples.Possible assignments of the detected emission bands are discussed in relation to the defects of quartz, specifically focusing on the Al centres that are most affected by sweeping procedures.  相似文献   

5.
The effect of X-ray irradiation and thermal treatments on the radio-luminescence emission spectrum of both a natural pegmatitic quartz and a synthetic one was investigated. All the emission spectra could be deconvolved into the same set of five Gaussian components. Among the identified RL bands, a blue emission at 2.53 eV (480 nm) is enhanced under X-ray irradiation. A strong correlation with the sensitization of the so called “110 °C” TSL peak (in our measurements seen at lower temperature due to the lower heating rate) was proved, suggesting that the recombination centers associated with the 2.53 eV band are produced under X-ray irradiation and are involved in both RL and TSL luminescence mechanisms. When each irradiation was followed by heating up to 500 °C a strong sensitization of the RL band emitting at 3.44 eV and of the 110 °C TSL peak were observed. A perfect correlation between the RL and TSL emissions suggests that the recombination centers involved in the RL and TSL emissions are the same.  相似文献   

6.
The electronic absorption spectrum of acetone is revisited to evaluate the role of hot bands due to low lying torsional modes in the assignment of vibronic transitions. The UV–VUV photoabsorption spectrum of acetone is recorded in the energy region 3.5–11.8 eV at a resolution of ~4 meV at 4 eV and ~10 meV at 10 eV using synchrotron radiation. The absorption spectrum is dominated by richly structured Rydberg series (ns, np and nd) converging to the first ionization potential of acetone at 9.708 eV. Careful consideration of hot band contributions from torsional modes and symmetry selection rules have resulted in an improved set of vibronic assignments as compared to earlier room temperature work. Revised quantum defect values for some of the Rydberg transitions and a few new assignments in the nd series are also reported in this paper.  相似文献   

7.
We have studied the photoluminescence of a-SixGeyO1  x  yfilms with average Ge-nanocrystal sizes ranging from over 100 nm down to 2 nm. No systematic peak shift of the luminescence bands at 3.0 eV and 2.0 eV with the diameter of the nanocrystals is observed. Comparision with a simplified confinement model shows that quantum size effects cannot explain the blue luminescence. We propose the Ge20defect as a likely source for this band, based on considerations about the crystallization process.  相似文献   

8.
The electronic structures of the SrWO4 crystals containing F-type color centers are studied within the framework of the fully relativistic self-consistent Dirac–Slater theory using a numerically discrete variational (DV-Xα) method. The calculations indicate that either F or F+ center has donor energy level within the forbidden band. The electronic transition energies from the two donor levels to the bottom of the conduction band are 1.82 eV and 2.28 eV corresponding to the 685 nm and 545 nm absorption bands, respectively. It is, therefore, concluded that the 545–685 nm absorption bands are originated from the F and F+ center in SrWO4 crystal respectively.  相似文献   

9.
Luminescence properties of CdMoO4 crystals have been investigated in a wide temperature range of T=5–300 K. The luminescence-excitation spectra are examined by using synchrotron radiation as a light source. A broad structureless emission band appears with a maximum at nearly 550 nm when excited with photons in the fundamental absorption region (<350 nm) at T=5 K. This luminescence is ascribed to a radiative transition from the triplet state of a self-trapped exciton (STE) located on a (MoO4)2? complex anion. Time-resolved luminescence spectra are also measured under the excitation with 266 nm light from a Nd:YAG laser. It is confirmed that triplet luminescence consists of three emission bands with different decay times. Such composite nature is explained in terms of a Jahn–Teller splitting of the triplet STE state. The triplet luminescence at 550 nm is found to be greatly polarized in the direction along the crystallographic c axis at low temperatures, but change the degree of polarization from positive to negative at T>180 K. This remarkable polarization is accounted for by introducing further symmetry lowering of tetrahedral (MoO4)2? ions due to a uniaxial crystal field, in addition to the Jahn–Teller distortion. Furthermore, weak luminescence from a singlet state locating above the triplet state is time-resolved just after the pulse excitation, with a polarization parallel to the c axis. The excited sublevels of STEs responsible for CdMoO4 luminescence are assigned on the basis of these experimental results and a group-theoretical consideration.  相似文献   

10.
Unusual crystal structure of 12CaO·7Al2O3 is composed by a framework of positively charged nanocages, which enable accommodation of various negative ions (and even electrons) inside these cages. Different filling of cages leads to significant changes in electronic structure and as the result in luminescence properties, as well. Luminescence was studied using time-resolved spectroscopy in VUV in the temperature range from 6 to 300 K. Electron loaded samples exhibit UV luminescence band peaked at ~5 eV. The excitation spectrum of this emission has the onset at the energy gap value of 6.8 eV, and its decay is well described with the sum of two exponential functions with life-times of τ1 = 3.7 ns and τ2 = 29 ns, respectively. Its thermal quenching is well approximated by the sum of two Mott-Seitz type curves with the activation energies of 34 meV and 70 meV. Experimental results indicate that this luminescence is possibly due to radiative decay of two singlet self-trapped exciton states, which hole components are localized on two non-equivalent framework oxygens.  相似文献   

11.
Single crystals of undoped and Co-doped ZnIn2Se4 were grown by the vertical Bridgman technique. The optical energy gaps of the single crystals were investigated in the temperature range of 10–300 K from the optical absorption measurements. The indirect optical energy gaps of the single crystals were found to be 1.624 eV for undoped ZnIn2Se4 and 1.277 eV for Co-doped one at 300 K. Also, the direct optical energy gaps were given by 1.774 and 1.413 eV for undoped ZnIn2Se4 and co-doped one, respectively. The temperature dependence of the optical energy gaps was well fitted by the Varshni equation.  相似文献   

12.
This paper reports the results of a time-resolved photoluminescence and energy transfer processes study in Ce3+ doped SrAlF5 single crystals. Several Ce3+ centers emitting near 4 eV due to 5d-4f transitions of Ce3+ ions substituting for Sr2+ in non-equivalent lattice sites were identified. The lifetime of these transitions is in the range of 25–35 ns under intra-center excitation in the energy region of 4–7 eV at T = 10 K. An effective energy transfer from lattice defects to dopant ions was revealed in the – 7–11 eV energy range. Both direct and indirect excitation channels are efficient at room temperature. Excitons bound to dopants are revealed at T = 10 K under excitation in the fundamental absorption region above 11 eV, as well as radiative decay of self-trapped excitons resulting in luminescence near 3 eV.  相似文献   

13.
Vapour transport equilibrium (VTE) technique was used to prepare near stoichiometric LiNbO3 (NSLN) crystals. Simultaneous occurrence of reduction has been observed during the Li-enrichment that results in the weak absorption bands centred at 1.7, 2.6 and 3.7 eV in the absorption spectrum. Annealing in oxygen atmosphere resulted in decrease in the intensity of these bands. The indirect and direct band-gap energies for NSLN crystals evaluated from absorption studies are reported. The energy of the phonon involved in the indirect transition is ~85 meV (685 cm?1). Near room temperature ac-conductivity measurements reveal lower conductivity for oxygen annealed NSLN crystal in comparison to as prepared NSLN and CLN specimens. The activation energies for ac-conductivity along the z-direction for NSLN and CLN crystals in the temperature range 500–1100 K are 1.03 eV and 0.96 eV, respectively.  相似文献   

14.
Near-infrared photoluminescence (PL) and thermally stimulated current (TSC) spectra of Cu3Ga5Se9 layered crystals grown by Bridgman method have been studied in the photon energy region of 1.35–1.46 eV and the temperature range of 15–115 K (PL) and 10–170 K (TSC). An infrared PL band centered at 1.42 eV was revealed at T = 15 K. Radiative transitions from shallow donor level placed at 20 meV to moderately deep acceptor level at 310 meV were suggested to be the reason of the observed PL band. TSC curve of Cu3Ga5Se9 crystal exhibited one broad peak at nearly 88 K. The thermal activation energy of traps was found to be 22 meV. An energy level diagram demonstrating the transitions in the crystal band gap was plotted taking account of results of PL and TSC experiments conducted below room temperature.  相似文献   

15.
Blue light emitting chromophores have been separated from silica spheres by soaking them into acetone for 120 days. The luminescent chromophores were not obtained from other solvents, including ether, methanol, ethanol, 2-propanol, chloroform and tetrahydrofuran. According to the Fourier transform infrared spectrum, the luminescent material is composed of C–OH, –CH2, –CH3, C=O, and Si–O–Si. UV–visible absorption peak of the chromophore is at 5.17 eV (240 nm). Field emission scanning electron microscope images show small cracks on the surface of aged spheres. The luminescence peak was at 2.81 eV (441 nm) for excitation energy between 3.88 and 3.35 eV and slightly shifted toward lower energy for excitation energy lower than 3.35 eV. The deconvoluted luminescent spectrum shows two emission bands at 3.08 and 2.74 eV, which are well-matched the oxygen deficient center model. Compared to the absorption peak (5.17 eV) and the emission peak (2.81 eV), large Stokes shift (2.36 eV) is observed.  相似文献   

16.
We report on the determination of exciton binding energy in perovskite semiconductor CsSnI3 through a series of steady state and time-resolved photoluminescence measurements in a temperature range of 10–300 K. A large binding energy of 18 meV was deduced for this compound having a direct band gap of 1.32 eV at room temperature. We argue that the observed large binding energy is attributable to the exciton motion in the natural two-dimensional layers of SnI4 tetragons in this material.  相似文献   

17.
Photoluminescence (PL), its temperature dependence, scanning electronic microscopy (SEM) and X ray diffraction (XRD) have been applied for the comparative study of varying the emission, morphology and crystal structure of ZnO and ZnO:Cu nanocrystals (NCs) versus technological routines, as well as the dependence of ZnO:Cu NC parameters on the Cu concentration. A set of ZnO and ZnO Cu NCs was prepared by the electrochemical (anodization) method at a permanent voltage and different etching durations with follows thermal annealing at 400 °C for 2 h in ambient air. The size of ZnO NCs decreases from 300 nm×540 nm down to 200 nm×320 nm with etching duration increasing. XRD study has confirmed that thermal annealing stimulates the ZnO oxidation and crystallization with the formation of wurtzite ZnO crystal lattice. XRD method has been used for monitoring the lattice parameters and for confirming the Cu doping of ZnO Cu NCs. In ZnO Cu NCs four defect related PL bands are detected with the PL peaks at 1.95–2.00 eV (A), 2.15-2.23  eV (B), 2.43–2.50 eV (C) and 2.61–2.69 eV (D). Highest PL intensities of orange, yellow and green emissions have been obtained in ZnO Cu NCs with the Cu concentration of 2.28 at%. At Cu concentration increasing (≥2.28 at%) the PL intensities of the bands A, B, C decrease and the new PL band peaked at 2.61–2.69 eV at 10 K appears in the PL spectrum. The variation of PL intensities for all PL bands versus temperature has been studied and the corresponding activation energies of PL thermal decay have been estimated. The type of Cu-related complexes is discussed using the correlation between the PL spectrum transformation and the variation of XRD parameters in ZnO Cu NCs.  相似文献   

18.
Optical and luminescence properties of transparent nanosized cerium doped Y3Al5O12 (YAG:Ce) ceramics have been studied. YAG:Ce nanoceramics were obtained by means of low temperature and high pressure (LTHP) sintering method. Nanoceramic samples were sintered in the 2–8 GPa pressure range, whereas Ce3+ concentration was varied in the 0.5–5 at. % range. It is shown that, in contrast to the single crystal, a strong rise of absorption coefficient was detected already at wavelength shorter than 400 nm in all nanoceramic samples studied. Furthermore, in nanoceramic samples unusual UV emission band near 3.1 eV was observed, which is not observed in the YAG:Ce single crystal. High pressure applied during nanoceramics sintering leads to significant changes in their optical and luminescence properties.  相似文献   

19.
During the last 4 years, empirical line lists for methane at room temperature and at 80 K were constructed from spectra recorded by (i) differential absorption spectroscopy (DAS) in the high energy part of the tetradecad (5852?6195 cm?1) and in the icosad (6717–7589 cm?1) and (ii) high sensitivity CW-Cavity Ring Down Spectroscopy (CRDS) in the 1.58 μm and 1.28 μm transparency windows (6165–6750 cm?1 and 7541–7919 cm?1, respectively). We have recently constructed the global line lists for methane in “natural” isotopic abundance, covering the spectral region from 5854 to 7919 cm?1 (Campargue A, Wang L, Kassi S, Mondelain D, Bézard B, Lellouch E, et al., An empirical line list for methane in the 1.26–1.71 μm region for planetary investigations (T=80–300 K). Application to Titan, Icarus 219 (2012) 110–128). These WKMC (Wang, Kassi, Mondelain, Campargue) empirical lists include about 43,000 and 46,420 lines at 80±3 K and 296±3 K, respectively. The “two temperature method” provided lower state energy values, Eemp, for about 24,000 transitions allowing us to account satisfactorily for the temperature dependence of the methane absorption over the considered region. The obtained lists have been already successfully applied in a large range of temperature conditions existing on Titan, Uranus, Pluto, Saturn and Jupiter.In the present contribution, we provide some improvements to our lists by using literature data to extend the set of lower state energy values and by correcting the distortion of the high Eemp values (J>10) due to the temperature gradient existing in the cryogenic cell used for the recordings. The proposed refinements are found to have an overall limited impact but they may be significant in some spectral intervals below 6500 cm?1.The new version of our lists at 80 K and 296 K is provided as Supplementary Material: the WKMC@80K+ and WKMC@296K lists are adapted for planetary and atmospheric applications, respectively. The WKMC@80K+ list is made applicable over a wider range of temperatures and shows satisfactory extrapolation capabilities up to room temperature. It was obtained by transferring to the 80 K list the 27,580 single lines present only in the 296 K list, with corresponding lower state energy values chosen to make them below the detectivity limit at 80 K.In the discussion, the different line lists and databases available for methane in the near infrared are compared and some suggestions are given.  相似文献   

20.
《Current Applied Physics》2009,9(5):1140-1145
Structural, electrical and optical properties of polyaniline (PAni) doped Bi2S3 composite thin films prepared by electrodeposition method are reported. X-ray diffraction pattern indicates its polycrystalline nature and crystallite size increases with increase in the concentration of PAni. FTIR studies reveal that the dopant PAni has affected the absorption phenomenon in the IR region of the Bi2S3 thin films. The optical band gap energy is found to be 1.91 eV for as-deposited Bi2S3 thin film and it decreases with increase in the concentration of PAni. The morphology of the doped films changes due to the addition of PAni. Electrical studies indicate that the conductivity increases with increase in the concentration of PAni. The conduction results from a hopping due to localized states in the temperature range 300–358 K. Above 358 K, the conduction process is explained by the traps at grain boundaries of partially depleted grains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号