首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
An efficient computer program has been developed to deconvolute thermoluminescence (TL) glow peaks and optically stimulated (OSL) curves by employing a method of the interactive trap model (ITM). The program is designed to be used easily on the MS Windows-based computer with a graphical user interface. This program could be used to analyze the TL glow curves by using the traditional first-order kinetics (1OK), second-order kinetics (2OK), general order kinetics (GOK), mixed order kinetics (MOK) and the general approximation (GA) method as well as ITM. The program was tested with the generated data and the experimental results of deconvoluted TL glow curves of LiF TLD-100 by assigning five interacting traps and one recombination center. A complete version with full functionalities of this program can be downloaded from the web site http://physica.gnu.ac.kr/TLanal.  相似文献   

2.
Thermoluminescence (TL) glow curves of LiF:Mg,Cu,Si were deconvoluted with the introduction of enhanced physical model which envisages that both electrons and holes, produced by ionization radiation and trapped at the respective traps, can be thermally released into the conduction and the valence band, respectively and the holes may also radiatively recombine with electrons at the electron recombination centers. The model is more generalized than the ordinary trap interaction model which only permits the traffic of electrons through the conduction band. An effective numerical analysis method was developed to calculate the glow curve to be compatible with the measured curves. The validity of the numerical method was verified through artificially generated TL glow curves for a wide range of trap parameters. In order to identify TL kinetics of LiF:Mg,Cu,Si with higher accuracy, its glow curves were deconvoluted for two more generalized models, namely, the Schön–Klasens model and the Chen–Pagonis–Lawless model as well as the ordinary trap interactive model. The parameters in the more generalized multi-trap multi-recombination center (MTMR) model were found to be consistent with the quasi-static approximation(QSA) method.  相似文献   

3.
We present an improved experimental procedure of separating a composite thermoluminescence glow curve into its components. Careful monitoring of the isothermal cleaning process using the initial rise method ensures the complete thermal removal of TL peaks. Digital subtraction of two experimental TL glow curves yields individual experimental TL glow peaks. Several standard methods (initial rise and whole glow curve) are used to obtain the energy values and frequency factors of the traps. The method has been used successfully to analyze the well-known composite TL glow curve of the dosimetric material LiF (TLD-100). The limitations of the method are illustrated by analyzing the highly complex TL glow curve of a UV irradiated synthetic calcite consisting of at least 6 TL peaks. Although the method works best for TL glow curves described by first order kinetics, it should also be applicable to more general kinetics.  相似文献   

4.
JAI PRAKASH 《Pramana》2013,81(3):521-533
Adirovitch set of equations has been modified to explain the mechanisms involved in thermoluminescence (TL) glow curve. A simple model is proposed which explains the occurrence of TL glow curve involving any extent of retrapping or any order of kinetics. It has been observed that the extents of recombination and simultaneous rewrapping decide the order of kinetics involved. TL decay parameters, order of kinetics and initial concentration of trapped electrons per unit volume are evaluated easily and conveniently. It has been observed that retrapping increases with increasing order of kinetics.  相似文献   

5.
In thermoluminescence (TL) measurements radiative recombination takes place at various temperatures. Typically, the quantum efficiency of luminescence decreases with increasing temperature. We call this mechanism the thermal quenching. There is no simple method to ‘restore’ unquenched TL data. This paper presents an algorithm, based on the Monte-Carlo method, for calculating the quenching function and restoring the unquenched TL curve. For this purpose we use a series of TL glow curves measured at the same initial conditions with variable heating rates. The method is quite general and no particular kinetic model of TL need to be assumed. The reliability of the method is tested using computer generated TL glow curves obeying the simple trap model (STM) kinetics.  相似文献   

6.
Here, we apply a recently developed technique to separate a composite thermoluminescence (TL) glow curve into its individual components and to evaluate the trap parameters of the individual TL glow peaks. These parameters include the order of kinetics b, the activation energy E (eV) and the frequency factor S (s?1) or the pre-exponential factor S″ (s?1). Recently, a general equation was developed to estimate the order of kinetics b. The characteristic point of this equation is that any set of three data points in a TL glow curve can yield b. Using this characteristic, an improved procedure was suggested to separate a composite glow curve, which includes several overlapping peaks, into its individual components and to obtain the trap parameters of the individual glow peaks. The method was applied here to analyze and determine the trap parameters of the TL glow curve of the promising TL dosimetric material, double potassium yttrium fluoride (K2YF5) doped with praseodymium ions (Pr3+), in response to γ-irradiation.  相似文献   

7.
We present a method for the estimation of defect (trap) physical parameters from thermoluminescence (TL) glow peaks. In this method, the order of kinetics b is determined using two values of TL intensity each of which corresponds to the same temperature (T 1) on two separate glow peaks of a phosphor. The two glow peaks are obtained from two aliquots of the phosphor irradiated to same dose but read out at different heating rates. The proposed method requires a minimum of only two data points in contrast to standard peak shape (PS) methods that require three points corresponding to three different temperatures on the same glow peak. Once the order of kinetics b is determined, the activation energy E is calculated by taking a second point (T 2) on any one of the two glow peaks. The values of b and E thus obtained are used to evaluate the frequency factor S ′′ and the number of trapped electrons before the heating begins n o. The validity of the method was checked using two numerically generated glow peaks. For the two cases, the method reproduced the input values reasonably well. The method was also used to analyse two experimental glow peaks. The results obtained provide a reasonably good fit to the experimental data. The kinetic parameters calculated using the present technique are comparable to those calculated using PS and initial rise methods. Initial guesses can easily be obtained for E and S ′′ using the present technique when a glow curve is to be deconvoluted with a model consisting of many unknown parameters with E and S″ inclusive.  相似文献   

8.
The thermoluminescent(TL) properties such as glow curve structure, relative thermoluminescence sensitivity,dose response linearity of lithium fluoride thermoluminescent dosimeters 6 LiF:Ti,Mg(TLD-600) and 7 LiF:Ti,Mg(TLD-700) are investigated after irradiation ~(252)Cf neutron+gamma and ~(90)Sr-~(90)Y beta sources at room temperature and then the obtained results are compared. The kinetic parameters, namely the order of kinetics b,activation energy Ea and the frequency factor s,are calculated using the computerized glow curve deconvolution(CGCD) program. The effect of heating rate on the glow curves of dosimeters is also investigated. The maximum TL peak intensities and the total area under the glow curves decrease with the increasing heating rate. There is no agreement with the kinetic parameters calculated by the CGCD program for both radiation sources.  相似文献   

9.
A new computerized glow curve deconvolution (CGCD) algorithm for thermoluminescence(TL) and optically stimulated luminescence (OSL) is presented. The proposed approach can be adopted in a numerical curve fitting for obtaining the relevant trapping parameters of a set of glow data taken with both thermal and optical stimulation. This method is based on the one trap one recombination center (OTOR) model with minimal simplifying assumptions. To demonstrate the ability of the method, a new computer program has been developed and tested with some synthetic OSL data.  相似文献   

10.
For the first time kinetic parameters of thulium doped Lithium calcium borate (LCB) Thermoluminescence (TL) material are reported here. Irradiated LCB:Tm3+ powder has revealed two intense TL glow peaks one at 510 (peak 1) and the other at 660 K (peak 2). Activation energy (E), frequency factor (s) and order of kinetics (b) of these peaks were determined by various heating rate (VHR), initial rise (IR), and peak shape (PS) methods. The trap depth and frequency factor determined for peaks 1 and 2 of LCB:Tm phosphor using VHR and IR methods are in good agreement. The average activation energy of peaks 1 and 2 obtained by these methods is 1.62 and 1.91 eV respectively. The frequency factors of peaks 1 and 2 are in the range of 1013–16 and 1012–14 sec−1 respectively. The E and s values estimated using the glow peak shape dependent parameters are relatively less compared to the values obtained from other methods. The large difference in these values is due to the complex nature of the glow curves. The order of the kinetics process for complex glow curve peaks could not be assigned on the basis of shape parameters alone but Tm response on absorbed dose is to be considered for final confirmation. Glow peaks 1 and 2 of LCB:Tm3+ obey first and general order kinetics respectively.  相似文献   

11.
The inorganic mineral fraction extracted from black pepper (Piper nigrum L.) has been analysed using a thermoluminescence (TL) method, investigating the glow curve structure, including an evaluation of the kinetic parameters. Different grain sizes, i.e. 10, 74, and 149 μm, were selected from commercial black pepper. The X-ray diffraction of the inorganic fraction shows that quartz is the main mineral present in it. The samples were exposed to 1–25 kGy doses by gamma rays of 60Co in order to analyse the thermally stimulated luminescence response as a function of the delivered dose. The glow curves show a complex structure for different grain sizes of the pepper mineral samples. The fading of the TL signal at room temperature was obtained after irradiation, and it was observed that the maximum peaks of the glow curves shift towards higher values of the temperature when the elapsed time from irradiation increases. It seems that the fading characteristic may be related to a continuous trap distribution responsible for the complex structure of the glow curve. Similar glow curves structure behaviour was found under ultraviolet irradiation of the samples. The activation energy and the frequency factor were determined from the glow curves of different grain sizes using a deconvolution programme because of the evident complexity of the structure.  相似文献   

12.
An algorithm was developed to integrally handle excitation by radiation, relaxation and luminescence by thermal or optical stimulation in thermoluminescence (TL) and optically stimulated luminescence (OSL) processes. This algorithm reflects the mutual interaction between traps through a conduction band. Electrons and holes are created by radiation in the beginning, and these electrons move to the trap through the conduction band. These holes move to the recombination center through a valence band. The ratio of the electrons allocated to each trap differs with the recombination probability and these values also relevant to the process of luminescence. Accordingly, the glow curve can be interpreted by taking the rate of electron–hole pairs created by ionizing radiation as a unique initial condition. This method differs from the conventional method of interpreting the measured glow curve with the initial electron concentration allocated to each trap at the end of irradiation. A program using the Visual Studio's C# subsystem was made to realize such a developed algorithm. To verify this algorithm it was applied to LiF:Mg,Cu,Si. The TL glow curve was deconvoluted with a model of five traps, one deep trap and one recombination center (RC).  相似文献   

13.
Optical bleaching of the thermoluminescence (TL) curve of K2YF5:Pr3+ has been observed after optically stimulated luminescence (OSL) readout of pre-irradiated crystals. The traps being responsible for the TL signal are not emptied completely by the optical stimulation. Furthermore, if the illumination time is increased a constant intensity level of the residual TL glow curve is eventually achieved. On the other hand, if the low temperature peak of the glow curve is thermally cleaned, no subsequent OSL is measured. This behavior has been successfully explained by assuming that part of the electrons in the trap being responsible for the low temperature glow peak of K2YF5:Pr3+ recombine with holes via localized transitions during optical stimulation. During TL all trapped electrons recombine via delocalized transitions. Simulations have been carried out in order to demonstrate the feasibility of the model.  相似文献   

14.
Kinetic parameters of glow peaks (as many as 14 in the range of 75–575 °C) of colorless microcline have been successfully achieved to a high degree of certainty by resorting to computerized glow curve deconvolution (CGCD) in the framework of kinetics formalism. The second derivative plot of the experimental glow curve is used to locate the hidden glow peaks. The criteria to accept the goodness of fit between the experimental glow curve and the numerically generated best fit curve is judged by statistical test namely, χ2-test. As a cross check, figure of merit (FOM) is also evaluated. The kinetic parameters of the higher temperature trap electrons of colorless microcline are determined by using lower heating rates.  相似文献   

15.
The aim of this work is to study the main thermoluminescence (TL) characteristics of the inorganic polyminerals extracted from dehydrated Jamaica flower or roselle (Hibiscus sabdariffa L.) belonging to Malvaceae family of Mexican origin. TL emission properties of the polymineral fraction in powder were studied using the initial rise (IR) method. The complex structure and kinetic parameters of the glow curves have been analysed accurately using the computerized glow curve deconvolution (CGCD) assuming an exponential distribution of trapping levels. The extension of the IR method to the case of a continuous and exponential distribution of traps is reported, such as the derivation of the TL glow curve deconvolution functions for continuous trap distribution. CGCD is performed both in the case of frequency factor, s, temperature independent, and in the case with the s function of temperature.  相似文献   

16.
The experimentally measured thermoluminescence (TL) glow curves of quartz samples are influenced by the presence of the thermal quenching effect, which involves a variation of the luminescence efficiency as a function of temperature. The real shape of the thermally unquenched TL glow curves is completely unknown. In the present work an attempt is made to reconstruct these unquenched glow curves from the quenched experimental data, and for two different types of quartz samples. The reconstruction is based on the values of the thermal quenching parameter W (activation energy) and C (a dimensionless constant), which are known from recent experimental work on these two samples. A computerized glow-curve deconvolution (CGCD) analysis was performed twice for both the reconstructed and the experimental TL glow curves. Special attention was paid to check for consistency between the results of these two independent CGCD analyses. The investigation showed that the reconstruction attempt was successful, and it is concluded that the analysis of reconstructed TL glow curves can provide improved values of the kinetic parameters E, s for the glow peaks of quartz. This also leads to a better evaluation of the half-lives of electron trapping levels used for dosimetry and luminescence dating.  相似文献   

17.
复合发光的本质是两种载流子的复合,但其衰减规律则视具体情况可以从一个极限(指数)变到另一个极限(抛物线),即复合发光是一个连续变化的过程。这主要取决于导带电子的行为,导带电子的行为可以用电子与离化发光中心复合与被陷阱俘获之比来表示。加热发光是在变化温度下的发光弛豫,它既与复合与俘获之比有关,还是陷阱深度的函数,因此在利用加热发光曲线测定陷阱深度时,要同时确定这两个参数。利用热释光动力学模型及其原理,对其发光过程进行了分析,解释了热释光过程既不是一个单分子过程也不是一个双分子过程,这两个过程实际是两个极端情形,都是近似。文章同时利用一些工具软件具体计算了ZnS:Cu, Co的陷阱深度及电子复合与俘获概率之比,精确的计算了这些参数,得n0 =2.6, ε=0.86eV。  相似文献   

18.
The properties of thermoluminescence (TL) glow curves have been studied in systems, containing one or more glow peaks, not restricted to the assumptions used to derive the usual first and second order glow peak kinetic expressions. If retrapping is negligible first order glow peaks are obtained whose peak temperature and shape are independent of other factors such as initial trapped charge concentrations. If retrapping occurs, glow peaks are obtained that are, in most cases, only approximated by first or second order kinetics. Also, in these cases the peak temperature, shape, relative intensity and other glow curve characteristics depend strongly on initial trapped charge concentrations, recombination and retrapping cross sections and other factors.  相似文献   

19.
JAI PRAKASH 《Pramana》2013,80(1):143-158
Ionic thermocurrent (ITC) spectrum is much similar to a thermoluminescence (TL) glow curve involving monomolecular kinetics. It has already been reported that different orders of kinetics are involved in TL processes, which depend specifically on the extent of recombination and simultaneous retrapping. It is found that the involvement of different orders of kinetics in ITC spectrum depends on the experimental conditions of polarization and rate of rapid cooling. Consequently, order of kinetics involved in the ITC spectrum does not represent any specific feature of the system under investigation. An equation is developed which explains the occurrence of ITC spectrum involving any order of kinetics. Dielectric relaxation parameters, order of kinetics and approximate number of dipoles per unit volume are evaluated conveniently and easily following the proposed model.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号