首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A reversed-phase high-performance liquid chromatographic method is described for the determination of 3-methylhistidine content in human urine using pre-column derivatization with phenylisothiocyanate, isocratic elution with 15 mM sodium acetate-acetonitrile (92:8, v/v) and electrochemical detection. The limit of quantitation was 0.1 pmol. The method has been applied in routine analyses of 3-methylhistidine in both clinical and research work.  相似文献   

2.
A capillary isotachophoretic (cITP) method to determine the concentration of 3-methylhistidine (3-MeHis) in meat and meat products is described. A clear separation of the 3-MeHis from histidine, 1-methylhistidine and other components of acidic sample hydrolyzate was achieved within 20 min. Method characteristics (linearity, accuracy, precision and detection limit) were determined. Low laboriousness, sufficient sensitivity and low running cost are the important attributes of cITP method. The developed method was successfully applied to analyses of real samples and used for the determination of lean meat content in meat and meat products.  相似文献   

3.
Force generation in muscle during contraction arises from direct interaction of the two main protein components of the muscle, myosin and actin. The process is driven by the energy liberated from the hydrolysis of ATP. In the presence of CaATP the energy released from hydrolysis produces conformational changes in myosin and actin, which can be manifested as an internal motion of myosin head while bound to actin. It is suggested that myosin heads attached to actin produce conformational changes during the hydrolysis process of ATP, which results in a strain in the head portion of myosin in an ATP-dependent manner. These structural changes lead to a large rotation of myosin neck region relieving the strain. Paramagnetic probes and EPR spectroscopy provide direct method in which the rotation and orientation of specifically labelled proteins can be followed during muscle activity. In order to find correlation between local and global structural changes in the intermediate states of the ATPase cycle, the spectroscopic measurements were combined with DSC measurements that report domain stability and interactions.  相似文献   

4.
The feasibility of microwave-accelerated derivatization for capillary electrophoresis (CE) with laser-induced fluorescence (LIF) detection was evaluated. The derivatization reaction was performed in a domestic microwave oven. Histidine (His), 1-methylhistidine (1-MH) and 3-methylhistidine (3-MH) were selected as test analytes and fluorescein isothiocyanate (FITC) was chosen as a fluorescent derivatizing reagent. Parameters that may affect the derivatization reaction and/or subsequent CE separation were systematically investigated. Under optimized conditions, the microwave-accelerated derivatization reaction was successfully completed within 150 s, compared to 4-24 h in a conventional water-bath derivatization process. This will remarkably reduce the overall analysis time and increase sample throughput of CE-LIF. The detection limits of this method were found to be 0.023 ng/mL for His, 0.023 ng/mL for 1-MH, and 0.034 ng/mL for 3-MH, respectively, comparable to those obtained using traditional derivatization protocols. The proposed method was characterized in terms of precision, linearity, accuracy and successfully applied for rapid and sensitive determination of these analytes in human urine.  相似文献   

5.
A sensitive and specific high performance liquid chromatographic method is described for measuring imidazole dipeptides and 3-methylhistidine in human muscle biopsies, serum and urine. Muscle extract, serum or urine was reacted with o-phthaldialdehyde and the derivatives were separated by reversed phase chromatography with column switching and fluorescence detection.  相似文献   

6.
We introduce here an ATP (adenosine triphosphate)-fueled nano-biomachine constructed from actin and myosin gels. Various types of chemically cross-linked actin gel, which are tens of times larger in size than native actin filaments (F-actin), were formed by complexing with cation-polymers and placed on a chemically cross-linked myosin gel. By adding dilute solution of ATP, they moved along the myosin gel with a velocity as high as that of native F-actin by coupling to ATP hydrolysis. Formation mechanism and structure of actin complexes as well as those of myosin gels were studied in detail and elucidated with the specific characteristics of the motility. These results demonstrate that one can construct nano-biomachines fueled by chemical energy of ATP with controlled motility. The text was submitted by the authors in English.  相似文献   

7.
We describe a new CE method with UV-detection for the quantification of histidine (His) and its methylated forms 1-methylhistidine and 3-methylhistidine, both in plasma and urine. Analytes were basically resolved using a 60?mmol/L Tris-phosphate run buffer pH 2.2 in less than 12?min. The use of a mixture of ACN/ammonia (80:20) for protein precipitation allows the quantitative recovery of all His from plasma. The optimization of the sample volume injection permits to reach an LOD of 20?nmol/L, thus improving the sensitivity of about hundred times in comparison to the previous described assays. Moreover, the opportunity to also measure creatinine in the same run makes it possible to evaluate the renal function contemporarily, thus avoiding further dosages with significant time saving. The application method has been proved by measuring His, 1-methylhistidine and 3-methylhistidine in 44 healthy subjects. In conclusion, our new method seems to be an inexpensive, fast and specific tool to assess large numbers of patients for routine analysis both in clinical and research laboratories.  相似文献   

8.
Discovering novel targets for autoantibodies in dilated cardiomyopathy   总被引:1,自引:0,他引:1  
There is increasing evidence that a large proportion of dilated cardiomyopathy (DCM) cases are mediated by autoimmune processes. Since DCM is a fatal disorder with rapid aggravation and is the leading cause of heart transplantation, further insights into disease pathogenesis are needed. Recent studies have separated the pathogenic capacity of autoantibodies and initial clinical trials removing such autoantibodies via immunoadsorption have been promising. In order to elucidate the full autoantibody repertoire involved in DCM, we applied an autoantibody screening test using ventricular and atrial proteomes as autoantigenic sources and subsequently tested the autoantibody-binding patterns of sera from dogs with spontaneous DCM. With this method, we detected five potentially DCM-related autoantigens which were identified by MS as being: myosin heavy chain cardiac muscle alpha isoform, alpha cardiac actin, mitochondrial aconitate hydratase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and brain glycogen phosphorylase (GPBB). The recovery of two known DCM autoantigens (myosin heavy chain and alpha cardiac actin) and the discovery of three novel autoantigens (mitochondrial aconitate hydratase, GADPH, and GPBB) underscore the efficacy of this experimental method and the significance of the spontaneous canine DCM model.  相似文献   

9.
The metal ion requirement of myosin-ADP binding was investigated by use of Mn2+. Mn2+ binds to two sets of noninteracting sites on myosin which are characterized by affinity constants of 10(6) and 10(3), M(-1) at 0.016 M KCl concentration. The maximum number of sites is 2 for the high affinity and 20-25 for the low affinity set. Binding of Mn2+ to the high affinity sites increases the affinity of ADP binding to myosin. F-actin inhibits ADP binding (Kiely, B., and Martonosi, A., Biochim. Biophys. Acta 172: 158-170 [1969]), but even at F-actin concentrations much higher than that required to saturate the actin binding sites of myosin or its proteolytic fragments, significant ADP binding remained. The actin insensitive portion of ADP binding was inhibited by 10(-4) M inorganic pyrophosphate or ATP. The results are discussed on the basis of a model in which actin and ADP bind to myosin at distinct but interacting sites.  相似文献   

10.
A low-capacity cation-exchange HPLC method for the determination of UV-absorbing organic cations such as amino acids, histidine dipeptides, and creatinine was developed. A commercially available reversed-phase column was dynamically coated with hexadecylsulfonate, and was successfully used for the cation-exchange separation with ethylenediammonium eluting ion at pH 2.5. The coated column was enough stable for the specific use with a completely aqueous mobile phase at low and constant pH; and the day-to-day reproducibility for retention time was 0.9-1.7% of RSD (relative standard deviation). The linear relation between concentrations and detector responses (area) by using a photodiode-array UV detection at 210 nm ranged from 0.2 to 1000 microM (sample size 50 microl) for 1-methylhistidine, 3-methylhistidine, histidine, creatinine, anserine, carnosine, and homocarnosine, and from 0.5 to 2000 microM for creatine, tyrosine, and phenylalanine, with less than 5% of RSD. The UV spectrum (190-300 nm) obtained during chromatography was very indicative for each analyte. Overall recoveries were 97-104%. The developed HPLC method in conjunction with preliminary fractionation technique could be applied to the analysis of urine of patient with metabolic disorder such as phenylketonuria.  相似文献   

11.
The internal dynamics and the thermal stability of myosin in rabbit psoas muscle fibres in different intermediate states of the ATP hydrolysis cycle were studied by differential scanning calorimetry (DSC) and electron paramagnetic resonance (EPR) spectroscopy. Three overlapping endotherms were detected in rigor, in strongly binding and weakly binding state of myosin to actin. The transition at 58.4°C can be assigned to the nucleotide-binding domain. The transition at highest temperature represents the unfolding of the actin and the contributions arising from the actin-myosin interaction. The transition of 54°C reflects the interaction between the subunits of myosin. Nucleotide binding induced shifts of the melting temperatures and produced variations in the calorimetric enthalpy changes. The changes of the EPR parameters indicated local rearrangements of the internal structure in myosin heads. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
CE with capacitively coupled contactless detection (C4D) was used to determine 3-methylhistidine (3-MH) and 1-methylhistidine (1-MH). The C4D response to 3-MH was studied in a BGE consisting of 500 mM acetic acid and ammonia at varying concentration and the results were compared with the theory. Complete separation of a model mixture of 3-MH, 1-MH, and histidine (His) was attained in two optimized BGEs, one containing 500 mM HAc, 20 mM NH4OH, and 0.1 % m/v hydroxyethylcellulose (HEC), pH 3.4 (I) and the other consisting of 100 mM morpholinoethanesulfonic acid (MES), 25 mM LiOH, and 0.1 % m/v HEC, pH 5.5 (II). These optimized BGEs were tested in CE/C4D analyses of urine. Promising results were obtained for separation and determination of 3-MH, 1-MH, and His on a silicon microchip, using aluminum strips as the C4D electrodes; the three analytes were baseline-separated within less than 30 s with a separation channel effective length of 38 mm. The LOD were satisfactory and amounted to 26.4 microM for 3-MH and 18.3 microM for 1-MH.  相似文献   

13.
We have examined by DSC the complexes of myosin with actin in fibre system in the absence of nucleotides and the intermediate state of ATP hydrolysis by mimicking stable complex with myosin and ADP and beryllium fluoride in muscle fibres. Comparing the DSC results with other structural analogues of phosphate Pi leads the conclusion that the AM.ADP.BeFx complex favours the AM.ADP.Pi complex in fibre system. The deconvolution of DSC scans resulted in four transitions, the first three transition temperatures were almost independent of the intermediate state of the muscle, the last transition temperature was shifted to higher temperature, depending on the actual intermediate states of ATP hydrolysis. In AM.ADP.Vi state the transition temperature at the second and third transitions (actin binding domain and myosin rod) varied only slightly, whereas the last one (the fourth transition) shifted markedly to higher temperature depending on the ternary complex, e.g. in case of ADP plus BeFx it was 77.7 °C, the highest value in weakly binding state of myosin to actin. The sum of calorimetric enthalpies of the first and last curves was practically constant, but their fractions depended on the state of the muscle. In strongly binding state of myosin to actin (rigor, ADP state) the fraction of the first transition was much larger, than the last one, whereas in weakly binding state of myosin to actin, the fraction of the first transition decreased at the expense of the last one. It supports also the view that these transitions are parts of the same portion of the myosin molecule.  相似文献   

14.
The extent of actin polymerization has been studied for samples in which the bound nucleotide of the actin was ATP, ADP, or an analog of ATP that was not split (AMPPNP). The equilibrium constants for the addition of a monomer to a polymer end were determined from the concentration of monomer coexisting with the polymer. An analysis of these results concludes that the bound ATP on G-actin provides little energy to promote the polymerization of the actin. AMPPNP was incorporated into F-actin and the interaction of F-actin - AMPPNP with myosin was studied. F-actin - AMPPNP activated the ATPase of myosin to the same extent as did F-actin - ADP. However, the rate of superprecipitation was slower in the case of F-actin - AMPPNP than in the control.  相似文献   

15.
A method for the determination of 3-methylhistidine using an automatic amino acid analyser has been developed. A single column system with lithium buffer (pH 3.950, 0.500 mol/l lithium and 0.067 mol/l citrate) was used for elution. The standard amino acid mixture of basic amino acids and some dipeptides usually present in physiological fluids was analysed for the development of the method. 3-Methylhistidine eluted in 46.7 +/- 0.049 min and the peak area coefficient of variation for the same sample was 1.07%. As 3-methylhistidine is completely resolved from the other basic amino acids and some dipeptides (anserine and carnosine), this method is suitable for the analysis of urine and muscle extracts as well as skeletal muscle protein hydrolysates where this amino acid is present in much lower concentrations than other amino acids.  相似文献   

16.
Actin is one of the main components in the eukaryote cells which plays significant role in many cellular processes, like force-generation, maintenance of the shape of cells, cell-division cycle and transport processes. In this study the thermal transitions of monomer and polymerized actins were studied to get information about the changes induced by polymerization and binding of myosin to actin using DSC and EPR techniques. The main thermal transition of F-actin was at 67.5°C by EPR using spin-labeled actin (the relative viscosity change was around 62°C), while the DSC denaturation T ms were at 60.3d°C for G-actin and at 70.5°C for F-actin. Applying the Lumry-Eyring model to obtain the parameters of the kinetic process and calculate the activation energy, a ‘break’ was found for F-actin in the function of first-order kinetic constant vs. 1/T. This indicates that an altered interdomain interaction is present in F-actin. The addition of myosin or heavy meromyosin (HMM) in different molar ratio of myosin to actin has changed significantly the EPR spectrum of spin-labeled F-actin, indicating the presence of the supramolecular complex. Analyzing the DSC traces of the actomyosin complex it was possible to identify the different structural domains of myosin and actin.  相似文献   

17.
Biomolecular motors, which convert chemical energy into mechanical work in intracellular processes, have high potential in bionanotechnology in vitro as molecular shuttles or nanoscale actuators. In this context, guided elongation of actin filaments in vitro could be used to lay tracks for myosin motor-based shuttles or to direct nanoscale actuators based on actin filament end-tracking motors. To guide the direction of filament polymerization on surfaces, microcontact printing was used to create tracks of chemically modified myosin, which binds to, but cannot exert force on, filaments. These filament-binding tracks captured nascent filaments from solution and guided the direction of their subsequent elongation. The effect of track width and protein surface density on filament alignment and elongation rate was quantified. These results indicate that microcontact printing is a useful method for guiding actin filament polymerization in vitro for biomolecular motor-based applications.  相似文献   

18.
The cardiac muscle proteins, myosin and actin, were purified in one step using a salicylate-silica affinity column. The affinity columns were prepared by coupling sodium salicylate via its hydroxyl group to an Altex Ultraffinity-EP column. Crude detergent extracts from guinea pig hearts were passed through the column and the myosin-actin complex was then eluted with excess free salicylate or high salt. The affinity of cardiac myosin for immobilized salicylate was unique as myosin heavy chain from guinea pig leg muscle detergent extracts could not be purified by this procedure. Commercially purified rabbit leg muscle myosin also appeared to have no interaction with the salicylate affinity column, suggesting that the column is specific for cardiac myosin.  相似文献   

19.
Contractile proteins are thought to play a causative role in motile processes such as phagocytosis. In order to investigate their role in phagocytosis further, simultaneous immunofluorescence localization of F-actin and myosin was carried out in resident mouse peritoneal macrophages after phagocytosis of opsonized zymosan particles. Both actin and myosin appeared to concentrate rapidly at sites of particle phagocytosis. The observed concentration of both proteins at such sites preceded ultimate particle engulfment. Cytochalasin B, a drug which was shown to block pseudopod extensions around the particle, did not prevent the concentration of the two congth effects as an explanation for the observed concentration of actin and myosin at phagocytic sites. Kinetic analysis showed that actin rapidly concentrates at particle-cell binding sites within minutes (or less) of contact with cell surface. The two proteins are present throughout the engulfment phase until and after ingestion is complete. Finally, at later times the particles become clustered over the cell nucleus and the particle-associated actin-myosin seen earlier is no longer evident.  相似文献   

20.
Thermal stability and internal dynamics of myosin head in psoas muscle fibres of rabbit in the intermediate state AM.ADP.Pi - mimicked by AM.ADP.Vi - of the ATP hydrolysis cycle was studied by differential scanning calorimetry and spin label electron paramagnetic resonance spectroscopy. Three overlapping endotherms were detected in rigor, in strongly binding ADP and weakly binding AM.ADP.Vi state of myosin to actin. The transition at 54.0°C can be assigned to the 50 k actin-binding domain. The transition at highest temperature (67.3°C) represents the unfolding of actin and the contributions arising from the nucleotide-myosin head interaction. The transition at 58.4°C reflects the melting of the large rod part of myosin. Nucleotide binding (ADP, ATP plus orthovanadate) induced shifts of the melting temperatures and produced changes in the calorimetric enthalpies. The changes of the EPR parameters indicated local rearrangements of the internal structure in myosin heads in agreement with DSC findings. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号