首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The interaction among the reacting species in the NO-CO reaction on a metal catalytic surface that proceeds according to the Langmuir-Hinshelwood thermal mechanism is studied by means of Monte Carlo simulations. The study of this system is essential for the understanding of the influence of impurities on the catalytic oxidation of NO by CO. It is found that this complex system exhibits irreversible phase transitions between active states with sustained reaction and poisoned states without reaction. The same system has also been investigated by non-thermal (Eley-Rideal) mechanism. Both the phase diagrams of the surface coverage and the steady state production of CO2 and N2 are evaluated as a function of the partial pressures of the reactants in the gas phase. From this study, it is observed that with the increase of impurities, the production rate reduces and the reaction stops at a certain point. Moreover, the first order transition in the phase diagram converts into second order phase transition that is in accordance with the experimental findings. Therefore, the first order phase transition, which is a characteristic of such catalytic reactions, is eliminated.  相似文献   

2.
The effect of co-adsorption of CO molecules in the NO-CO reaction on a metal catalytic surface like Pt(001) is studied by applying the Langmuir-Hinshelwood mechanism using the Monte Carlo simulations. The system is investigated by two approaches of NO adsorption; dissociatively at two empty surface sites and molecularly at a single vacant site. The elementary steps are the same as those in the conventional Ziff-Gulari-Barshad model. With the additional reaction step of co-adsorption, the sustained production of CO2 is obtained, which has never been seen on a square lattice without introducing additional parameters. The most interesting result is the elimination of continuous second order phase transition, i.e. the production of CO2 starts as soon as the partial pressure of CO departs from zero, which is in accordance with the experimental observations. The effect of co-adsorption probability on the phase diagrams has also been studied.  相似文献   

3.
ABSTRACT

The stable configurations, electronic structures and catalytic activities of single-atom metal catalyst anchored silicon-doped graphene sheets (3Si-graphene-M, M?=?Ni and Pd) are investigated by using density functional theory calculations. Firstly, the adsorption stability and electronic property of different gas reactants (O2, CO, 2CO, CO/O2) on 3Si-graphene-M substrates are comparably analysed. It is found that the coadsorption of O2/CO or 2CO molecules is more stable than that of the isolated O2 or CO molecule. Meanwhile, the adsorbed species on 3Si-graphene-Ni sheet are more stable than those on the 3Si-graphene-Pd sheet. Secondly, the possible CO oxidation reactions on the 3Si-graphene-M are investigated through Eley–Rideal (ER), Langmuir–Hinshelwood (LH) and new termolecular Eley–Rideal (TER) mechanisms. Compared with the LH and TER mechanisms, the interaction between 2CO and O2 molecules (O2?+?CO → CO3, CO3?+?CO → 2CO2) through ER reactions (< 0.2?eV) are an energetically more favourable. These results provide important reference for understanding the catalytic mechanism for CO oxidation on graphene-based catalyst.  相似文献   

4.
The interaction among the reacting species in the NO-CO-O2 reaction on a metal catalytic surface that proceeds according to the Langmuir-Hinshelwood mechanism is studied by means of Monte Carlo simulation. The study of this three-component system is essential for the understanding of the influence of NO/O2 ratio on the catalytic reduction of NO into N & O and oxidation of CO to CO2. It is found that this complex system, which has not been studied on these lines before, exhibits irreversible phase transitions between active states with sustained reaction and poisoned states with the catalytic surface fully covered by the reactants. The phase diagrams of the surface coverage with CO, N or O and the steady state production of CO2 are evaluated as a function of the partial pressure of CO in the gas phase. From this study, it is observed that with the addition of NO in the CO-O2 reaction, the critical points in the phase diagram move towards lower values of CO partial pressure but the width of reaction window remains almost the same. However, the maximum production rate of CO2 decreases continuously. On the other hand, the addition of O2 in the NO-CO reaction shifts the critical points towards higher values of CO pressure. Moreover, the width of reaction window as well as the production rate of CO2 increases with the increase in O2 concentration.  相似文献   

5.
Adsorption and reaction of CO on two possible terminations of SrTiO3 (100) surface are investigated by the first-principles calculation of plane wave ultrasoft pseudopotentiai based on the density function theory. The adsorption energy, Mulliken population analysis, density of states (DOS) and electronic density difference of CO on SrTiO3 (100) surface, which have never been investigated before as far as we know are performed. The calculated results reveal that the Ti-CO orientation is the most stable configuration and the adsorption energy (0.449eV) is quite small. CO molecules adsorb weakly on the SrTiO3 (100) surface, there is predominantly electrostatic attraction between CO and the surface rather than a chemical bonding mechanism.  相似文献   

6.
 以(C2H5)2O·BF3和Li3N为原料,于苯热条件下合成氮化硼并研究其相变机理。X射线粉末衍射和傅立叶变换红外吸收光谱分析证明,产物中不仅有hBN和cBN物相存在,而且还发现了正交氮化硼(oBN)和锂硼氮的常压相Li3BN2(O)及高压相Li3BN2(T)存在。分析了Li3BN2在高温高压条件下和在苯热条件下对合成cBN催化机制的差异,探讨了Li3BN2在以Li3N和(C2H5)2O·BF3为原料合成BN的催化机制,提出常压相Li3BN2(O)和高压相Li3BN2(T)分别对生成cBN和oBN起催化作用的观点。  相似文献   

7.
液态CO2高温高密度状态方程研究   总被引:1,自引:0,他引:1       下载免费PDF全文
 利用二级轻气炮作冲击加载手段,采用自己建立的低温靶,比较系统地研究了液态CO2的冲击压缩行为。在20~60 GPa压力区获得六个新的Hugoniot数据点。根据这些实验点,采用液体统计力学理论和化学平衡方法,重新优化获得一组CO2-CO2,CO2-O,CO-O作用势参数。分析表明,引起体系在25 GPa以上区域冲击软化现象的主要机制是CO2离解反应,CO2—→CO+O。  相似文献   

8.
液态N2、CO冲击压缩特性研究   总被引:6,自引:4,他引:6       下载免费PDF全文
 介绍利用液氮致冷技术实现低温靶的冷却及样品气体的液化,并通过二级轻气炮对液态气体加载进行平面冲击压缩,实验分别测得10~57 GPa一次冲击压缩下液氮和液态CO的Hugoniot关系数据。这些实验数据结果显示,33 GPa以上比其以下更容易压缩,这种现象本质是氮发生离解相变消耗内能的一种表现形势。液态在20 GPa以下表现为一种稳定的压缩过程,而在其以上则伴随有较为复杂的化学反应现象产生。此外,实验研究还发现,20 GPa以下N2和CO两种分子液体的冲击压缩特性非常相似。  相似文献   

9.
Pt Schottky diode gas sensors for CO are fabricated using A1GaN/GaN high electron mobility transistor(HEMTs)structure. The diodes show a remarkable sensor signal (3 mA, in N2, 2mA in air ambient) biased 2 V after 1% CO is introduced at 50℃. The Schottky barrier heights decrease for 36meV and 27meV in the two cases respectively. The devices exhibit a slow recovery characteristic in air ambient but almost none in the background of pure N2, which reveals that oxygen molecules could accelerate the desorption of CO and offer restrictions to CO detection.  相似文献   

10.
Nitrogen-doped ZnO (ZnO:N) films are prepared by thermal oxidation of sputtered Zn3N2 layers on A1203 substrates. The correlation between the structural and optical properties of ZnO:N films and annealing temperatures is investigated. X-ray diffraction result demonstrates that the as-sputtered Zn3N2 films are transformed into ZnO:N films after annealing above 600℃. X-ray photoelectron spectroscopy reveals that nitrogen has two chemical states in the ZnO:N films: the No acceptor and the double donor (N2)o. Due to the No acceptor, the hole concentration in the film annealed at 700℃ is predicted to be highest, which is also confirmed by Hall effect measurement. In addition, the temperature dependent photoluminescence spectra allow to calculate the nitrogen acceptor binding energy.  相似文献   

11.
We report a large resistance drop induced by Dc electrical currents in charge-ordered Ca0.9Ce0.1MnO3. A giant electroresistance (ER) of ∼90% at 100 mA current below charge ordering (CO) transition temperature (TCO) is found. Nonlinear conduction, which starts above a threshold current, gives rise to a region of negative differential resistance (NDR). The nonlinear conduction cannot be explained by homogeneous Joule heating of the sample. The origin of these phenomena is discussed in view of current induced collapse of CO state associated with phase-separation mechanism. This work can be useful for the potential applications of ER such as nonvolatile memory elements.  相似文献   

12.
Pt4 - catalyses the conversion of CO and N2O to CO2 and N2 in the gas phase, as observed by Fourier transform ion cyclotron (FT-ICR) mass spectrometry. The partial pressures of CO and N2O determine the extent of poisoning and the turnover numbers that can be achieved. The catalytic conversion terminates as soon as two CO are adsorbed on the cluster. With N2O, the reactivity of Pt4O2 - and Pt4O3 - is reduced to 41% and 34% compared to Pt4O-, respectively, and with Pt4O4 - this value is reduced to 1%. In contrast, Pt4 + shows no apparent catalytic activity. Density functional theory calculations of Pt4 +/- with CO and N2O adsorbates reveal significantly different stabilities of the reaction intermediates for the different charge states.  相似文献   

13.
X-ray diffraction has been used to study the structure and orientational phase transitions of CO and N2 adsorbed on graphite (Papyex). Both form orientationally ordered 2√3 × 2√3 R30° commensurate phases on graphite at low temperatures (10 K). The in-plane herringbone structure of N2 has been confirmed but CO has more orientational disorder than N2, which may be associated either with tilting, random static or systematic, of the molecules away from the surface and/or with orientational order of shorter range than the centre of mass order. In the first case the average tilt would have to be about 26° and in the second case the orientational correlation length would have to be 200 Å compared with 450 Å for the translational order. The orientational phase transition is sharp for N2, occurring over the range 27–30 K, in agreement with previous work. For CO the transition is broad and starts at lower temperatures. This and the structural data indicate that a point quadrupolar interaction is not a suitable model for comparing the properties of N2 and CO layers. The orientational phase transition in the incommensurate phase of N2 is found to be broad and occurs below 20 K. For CO it is sharper than for the commensurate phase and occurs at a higher temperature. The lattice parameter changes by 0.75% across the orientational phase transition. For both N2 and CO there is evidence of translational disorder in the commensurate phases but it cannot be interpreted quantitatively.  相似文献   

14.
An investigation of structural stabilities, electronic and optical properties of SrF2 under high pressure is conducted using a first-principles calculation based on density functional theory (DFT) with the plane wave basis set as implemented in the CASTEP code. Our results predict that the second high-pressure phase of SrF2 is of a Ni2In- type structure, and demonstrate that the sequence of the pressure-induced phase transition of SrF2 is the fluorite structure (Fm3m) to the PbC12-type structure (Pnma), and to the Ni2In-type phase (P63/mmc). The first and second phase transition pressures are 5. 77 and 45.58 GPa, respectively. The energy gap increases initially with pressure in the Fm3m, and begins to decrease in the Pnma phases at 30 GPa. The band gap overlap metallization does not occur up to 210 GPa. The pressure effect on the optical properties is discussed.  相似文献   

15.
To quantify the changes of the geometric shielding effect in a molecule as the incident electron energy varies, we present an empirical fraction, which represents the total cross section (TCS) contributions of shielded atoms in a molecule at different energies. Using this empirical fraction, a new formulation of the additivity rule is proposed. Using this new additivity rule, the TCSs for electron scattering by CO2, C2H2, C6H12 (cyclo-hexane) and CsH16 (cyclo-octane) are calculated in the range 50-5000 e V. Here the atomic cross sections are derived from the experimental TCS results of simple molecules (H2, O2, CO). The quantitative TCSs are compared with those obtained by experiments and other theories, and good agreement is attained over a wide energy range.  相似文献   

16.
The effects of annealing on the chemical states of N dopant, electrical, and optical properties of N-doped ZnO film grown by molecular beam epitaxy (MBE) are investigated. Both the as-grown ZnO:N film and the film annealed in N2 are of n-type conductivity, whereas the conductivity converts into p-type conductivity for the film annealed in O2. We suggest that the transformation of conductivity is ascribed to the change in ratio of the N molecular number on O site (N2)O to the N atom number on O site (NO) in ZnO:N films under the various annealed atmosphere. For the ZnO:N film annealed in N2, the percentage content of (N2)O is larger than that of NO, i.e.the ratio >1, resulting in the n-type conductivity. However, in the case of the ZnO:N film annealed in O2, the percentage content of (N2)O is fewer than that of NO, i.e., the ratio <1, giving rise to the p-type conductivity. There is an obvious difference between low-temperature (80K) PL spectra of ZnO:N film annealed in N2 and that of ZnO:N film annealed in O2. An emission band located at 3.358eV is observed in the spectra of the ZnO:N film after annealed in N2, this emission band is due to donor-bound exciton (D0X). After annealed in O2, the PL of the donor-bound exciton disappeared, an emission band located at 3.348eV is observed, this emission band is assigned to acceptor-bound exciton (A0X).  相似文献   

17.
Cu-based oxides oxygen carriers and catalysts are found to exhibit attractive activity for CO oxidation, but the dispute with respect to the reaction mechanism of CO and O2 on the CuO surface still remains. This work reports the kinetic study of CO oxidation on the CuO (111) surface by considering the adsorption, reaction and desorption processes based on density functional theory calculations with dispersion correction (DFT-D). The Eley–Rideal (ER) CO oxidation mechanism was found to be more feasible than the Mars-van-Krevelen (MvK) and Langmuir–Hinshelwood (LH) mechanisms, which is quite different from previous knowledge. The energy barrier of ER, LH, and MvK mechanisms are 0.557, 0.965, and 0.999 eV respectively at 0 K. The energy barrier of CO reaction with the adsorbed O species on the surface is as low as 0.106 eV, which is much more active in reacting with CO molecules than the lattice O of CuO (111) surface (0.999 eV). A comparison with the catalytic activity of the perfect Cu2O (111) surface shows that the ER mechanism dictates both the perfect Cu2O (111) and the CuO (111) surface activity for CO oxidation. The activity of the perfect Cu2O (111) surface is higher than that of the perfect CuO (111) surface at elevated temperatures. A micro-kinetic model of CO oxidation on the perfect CuO (111) surface is established by providing the rate constants of elementary reaction steps in the Arrhenius form, which could be helpful for the modeling work of CO catalytic oxidation.  相似文献   

18.
轻气炮低温靶的结构及液态CO2冲击压缩特性的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
 介绍了一种二级轻气炮的低温靶(温度可调范围为180~290 K)系统以及高纯度低温分子液体样品的制备技术。利用该项技术,我们在低温靶中成功地制备出了符合冲击实验要求的液态CO2样品,并在20~60 GPa区域获得7个冲击压缩数据点。经分析发现,液态CO2在30 GPa附近发生了冲击相变。  相似文献   

19.
 本文在0~4 GPa范围内研究了预压力对硬脂酸晶体的相关场劈裂和固态-熔融态相变过程的影响。通过γCH2面内摇摆振动模和γ'CH2相关场模的强度和频率变化,发现预压力对晶体内的相关场合分子链取向有明显的影响。预压力对硬脂酸的熔点虽然没有影响,但对γ'CH2模有“硬化”作用。并且由此出发,对硬脂酸的预熔过程作了讨论。  相似文献   

20.
Ternary transition metal nitrides, Fe3 W3N, Coa W3N, and Nia WaN~ are studied by the use of interatomic potentials acquired from lattice inversion. The study indicates that Fe3 WaN would be more stable than the other compounds in the family of intermetallic tungsten nitrides. The investigation of phonon density of states indi- cates that the lower frequency modes are mostly excited by the metal atoms, and the higher frequency modes are mostly excited by the nitrogen atoms. A qualitative analysis is carried out with the relevant potentials for the phase stability and vibrational modes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号