首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microwave irradiation has been successfully applied in organic chemistry. Spectacular accelerations, higher yields under milder reaction conditions and higher product purities have all been reported. Indeed, a number of authors have described success in reactions that do not occur under conventional heating and modifications in selectivity (chemo-, regio- and stereoselectivity) have even been reported. Recent advances in microwave-assisted combinatorial chemistry include high-speed solid-phase and polymer-supported organic synthesis, rapid parallel synthesis of compound libraries, and library generation by automated sequential microwave irradiation. In addition, new instrumentation for high-throughput microwave-assisted synthesis continues to be developed at a steady pace. The impressive speed combined with the unmatched control over reaction parameters justifies the growing interest in this application of microwave heating. In this review we highlight our recent advances in this area, with a particular emphasis on cycloaddition reactions of heterocyclic compounds both with and without supports, applications in supramolecular chemistry and the reproducibility and scalability of organic reactions involving the use of microwave irradiation techniques.  相似文献   

2.
In combination with high throughput screening, combinatorial organic synthesis of large numbers of pharmaceutically interesting compounds may revolutionize the drug discovery process. Although combinatorial organic synthesis on solid supports is a useful approach, several groups are focusing their research efforts on liquid-phase combinatorial synthesis by the use of soluble polymer supports to generate libraries. This macromolecular carrier, in contrast to an insoluble matrix, is soluble in most organic solvents and has a strong tendency for precipitation in particular solvents. Liquid-phase combinatorial synthesis is a unique approach since homogeneous reaction conditions can be applied, but product purification similar to the solid-phase method can be carried out by simple filtration and washing. This method combines the positive aspects of classical solution-phase chemistry and solid-phase synthesis. This review examines the recent applications (1995-1999) of soluble polymer supports in the synthesis of combinatorial libraries.  相似文献   

3.
This paper describes the use of dendritic polyglycerol as a new high-loading polymeric support. The soluble polyether skeleton allows the parallel synthesis of small libraries on a large scale (1-5 mmol). Purification of polymer-bound products is easily achieved by a parallel dialysis apparatus, which was developed to separate up to 12 reaction mixtures simultaneously. The terminal 1,2-diol groups of polyglycerol (loading capacity: 4.1 mmol diol/g) can be directly coupled with carbonyl compounds without additional linker groups. At the same time the polyglycerol support acts as a polymeric ketal protecting group. The coupling of the carbonyl compounds occurs in high yields, and effective loading capacities of up to 3.5 mmol of ketone/g can be reached. The obtained polymeric acetals can easily be characterized by standard analytical techniques, such as NMR, IR, UV, and SEC. The versatility of this new polymeric support for solution-phase organic synthesis is demonstrated by two efficient polymer-supported syntheses: nucleophilic substitutions of gamma-chloroketones with amines and Suzuki-coupling on p-bromobenzaldehyde. The acid-catalyzed acetal cleavage with a solid-phase acidic ion-exchange resin in methanol demonstrates the orthogonal use of these soluble polymeric supports with conventional solid-phase reagents. Cleavage of products occurs in high yields, and almost complete recovery (>95%) of the polyglycerol support has been demonstrated after phase separation or ultrafiltration.  相似文献   

4.
Mono- and alpha,omega-bis-styryl-oligo(oxyethylene glycol) ethers have been constructed in an efficient two-step synthesis. From these precursors, poly(oxyethylene glycol) polymer (POP) supports of varying monomer and cross-linker composition have been produced. The swelling properties and mass-solvent uptake of these novel materials have been evaluated in a variety of solvents, demonstrating that POP supports exhibit enhanced solvent compatibilities over the commercial resins TENTA-GEL, ARGO-GEL, and Merrifield's resin. The utility of POP supports in solid-phase organic chemistry has also been demonstrated successfully. It is anticipated that these high-loading polymeric supports will have generic application in the solid-phase synthesis of combinatorial libraries and the in situ screening of these libraries in the aqueous environment of a bioassay.  相似文献   

5.
Until recently, repetitive solid-phase synthesis procedures were used predominantly for the preparation of oligomers such as peptides, oligosaccharides, peptoids, oligocarbamates, peptide vinylogues, oligomers of pyrrolin-4-one, peptide phosphates, and peptide nucleic acids. However, the oligomers thus produced have a limited range of possible backbone structures due to the restricted number of building blocks and synthetic techniques available. Biologically active compounds of this type are generally not suitable as therapeutic agents but can serve as lead structures for optimization. “Combinatorial organic synthesis” has been developed with the aim of obtaining low molecular weight compounds by pathways other than those of oligomer synthesis. This concept was first described in 1971 by Ugi.[56f,g,59c] Combinatorial synthesis offers new strategies for preparing diverse molecules, which can then be screened to provide lead structures. Combinatorial chemistry is compatible with both solution-phase and solid-phase synthesis. Moreover, this approach is conducive to automation, as proven by recent successes in the synthesis of peptide libraries. These developments have led to a renaissance in solid-phase organic synthesis (SPOS), which has been in use since the 1970s. Fully automated combinatorial chemistry relies not only on the testing and optimization of known chemical reactions on solid supports, but also on the development of highly efficient techniques for simultaneous multiple syntheses. Almost all of the standard reactions in organic chemistry can be carried out using suitable supports, anchors, and protecting groups with all the advantages of solid-phase synthesis, which until now have been exploited only sporadically by synthetic organic chemists. Among the reported organic reactions developed on solid supports are Diels–Alder reactions, 1,3-dipolar cycloadditions, Wittig and Wittig–Horner reactions, Michael additions, oxidations, reductions, and Pd-catalyzed C? C bond formation. In this article we present a comprehensive review of the previously published solid-phase syntheses of nonpeptidic organic compounds.  相似文献   

6.
A series of norbornene-based resin beads were obtained by aqueous suspension ring-opening metathesis polymerization (ROMP) and used as polymeric supports for organic synthesis. These resins were prepared from norbornene, norborn-2-ene-5-methanol, and cross-linkers such as bis(norborn-2-ene-5-methoxy)alkanes, di(norborn-2-ene-5-methyl)ether, and 1,3-di(norborn-2-ene-5-methoxy)benzene. The resulting unsaturated ROMP (U-ROMP) resins containing olefin repeat units were chemically modified using hydrogenation, hydrofluorination, chlorination, and bromination reactions to produce saturated ROMP resins with different chemical and physical properties. The hydrogenated ROMP (H-ROMP) resin was found to be highly resistant to acidic, basic, Lewis acid, and Birch reduction conditions and was assessed as a polymeric support in a series of solid-phase synthetic applications. The H-ROMP resin was found to have superior performance compared to polystyrene-divinylbenzene (PS-DVB) copolymers in aromatic nitration and acylation reactions. In a conventional five-step solid-phase synthesis of a hydantoin, similar results were obtained for both the H-ROMP and PS-DVB resins. The U-ROMP resin was also shown to be effective in the solid-phase syntheses of benzimidazoles and benzimidazolones.  相似文献   

7.
One of the key elements in the drug discovery process is the use of automation to synthesize libraries of compounds for biological screening. The "split-and-mix" approaches in combinatorial chemistry have been recognized as extremely powerful techniques to access large numbers of compounds, while requiring only few reaction steps. However, the need for effective encoding/deconvolution strategies and demands for larger amounts of compounds have somewhat limited the use of these techniques in the pharmaceutical industry. In this paper, we describe a concept of directed sort and combine synthesis with spatially arranged arrays of macroscopic supports. Such a concept attempts to balance the number of reaction steps, the confidence in compound identity, and the quantity of synthesized compounds. Using three-dimensional arrays of frames each containing a two-dimensional array of macroscopic solid supports, we have conceptualized and developed a modular semiautomated system with a capacity of up to 100 000 compounds per batch. Modularity of this system enables flexibility either to produce large diverse combinatorial libraries or to synthesize more focused smaller libraries, both as single compounds in 12-15 micromol quantities. This method using sortable and spatially addressed arrays is exemplified by the synthesis of a 15 360 compound library.  相似文献   

8.
This review will cover the entire hit identification process performed with biocompatible, aqueous solvated, poly[ethylene glycol] (PEG) based resins - from synthesis, through screening, to analysis. The different types of resins (including their preparation) will be discussed and compared individually. Examples of one-bead-one-compound substrate libraries will be presented, as will one-bead-two-compounds libraries used for the discovery of enzyme inhibitors. The review includes a section covering organic and bio-organic reactions performed on all-PEG resins and discusses on-bead screening of the libraries with biomolecules. Finally, analysis of compounds on single beads, either via investigation by on-bead NMR or by ladder-coding of the combinatorial compound is covered. In general, the review will focus on chemistry, libraries, synthesis, screening, and analysis, using all-PEG based resins.  相似文献   

9.
Summary: Suspension polymerization yielded microspheres (40–50 μm) of polyacrolein. Smooth and rugged surfaces can be created by varying the polymerization procedure. We have shown that the polyacrolein resins with a high loading of aldehyde groups serve as effective scavengers for primary amines and may be used to remove compounds bearing amino groups in the combinatorial synthesis of compound libraries. Copolymerization with styrene can help to separate the adjacent aldehyde groups, thus making the functional groups more available in organic reactions. The polyacrolein resins in the aldehyde form or after appropriate chemical modifications may also be useful as support materials in solid‐phase synthesis.

The SEM image of macroporous polyacrolein microspheres with toluene as porogen prepared by free radical polymerization.  相似文献   


10.
The application of microwave irradiation to expedite solid-phase organic reactions could be the tool that allows combinatorial chemistry to deliver on its promise--providing rapid access to large collections of diverse small molecules. Herein, several different approaches to microwave (MW)-assisted solid-phase reactions and library synthesis are introduced, including the use of solid-supported reagents, multicomponent coupling reactions, solvent-free parallel library synthesis, and spatially addressable library synthesis on planar solid supports. The future impact of MW-assisted organic reactions on solid-phase and combinatorial chemistry could prove to be immense, and methods for further improvement of this strategic combination of technologies are highlighted.  相似文献   

11.
Combinatorial chemistry has become a significant part of the discovery and optimization process for novel drugs, affinity ligands, and catalysts. The polymeric supports play a key role in combinatory chemistry. Therefore, various kinds of functional polymer resins have been exploited as supports, reagents, and catalysts in organic synthesis. In comparison to the conventional Merrifield resins, the poly(ethylene glycol) (PEG)-related polymer resins have advantages including good compatibilities with polar solvents, good solvent absorbency and swelling properties. This review focuses primarily on the more recent work in the field of developing PEG-related polymer resins as supports for organic synthesis.  相似文献   

12.
组合化学已成为发现和优化新药、亲和配体和催化过程中的重要组成部分.高分子载体树脂在组合化学中起着关键的作用,各种类型的聚合物树脂在有机合成中已被广泛开发为载体、反应物和催化剂.与传统的Merrifield树脂相比较,聚乙二醇(PEG)化的聚合物树脂具有与极性溶剂更好的相容性、更高的溶剂吸收和溶胀性能.本文主要综述与PEG相关联的聚合物树脂在有机合成载体领域中的最新成果.  相似文献   

13.
New hydrophilic poly(vinyl alcohol) (PVA-OH) resins were prepared by an inverse suspension polymerization using epichlorohydrin as a cross-linker. These novel resins swell in a variety of solvents commonly used in solid-phase organic synthesis, such as dicholomethane, dioxane, methanol, tetrahydrofuran, and dimethylformamide. In addition, PVA-OH shows excellent swelling in water. The cross-linked PVA-OH beads were functionalized with an aldehyde group and were tested as scavengers for primary amines in three different reactions: amide bond formation, reductive amination reaction, and urea formation. With 1-2 equiv of the PVA aldehyde resin, all the excess primary amines were successfully scavenged. The utility of PVA-OH resins as solid supports in mono- and dipeptide synthesis was also investigated using symmetrical anhydride and MSNT/MeIm (2,4,6-mesitylenesulfonyl-3-nitro-1,2,4-triazolide in the presence of 1-methylimidazol) methods.  相似文献   

14.
Aryldiazepin-2-ones are known as "privileged structures", because they bind to multiple receptor types with high affinity. Toward the development of a novel class of aryldiazepin-2-one scaffolds, the synthesis of pyrrolo[3,2-e][1,4]diazepin-2-ones on a support was explored starting from N-(PhF)-4-hydroxyproline and featuring an acid-catalyzed Pictet-Spengler reaction to form the diazepine ring. Three supports [Wang resin, tetraarylphosphonium (TAP) soluble support, and Merrifield resin] were examined in the synthesis of the heterocycle and exhibited different advantages and disadvantages. Wang resin proved effective for exploratory optimization of the synthesis by identification of intermediates after resin cleavage under mild conditions; however, the acidic conditions of the Pictet-Spengler reaction caused premature loss of resin-bound material. Direct monitoring of reactions by TLC, RP-HPLC-MS, and in certain cases NMR spectroscopy was possible with the TAP support, which facilitated purification of intermediates by precipitation; however, incomplete precipitation of material led to overall yields lower than those from solid-phase approaches on resin. Merrifield resin proved stable to the conditions for the synthesis of the pyrrolo[3,2-e][1,4]diazepin-2-one targets and would be amenable to "split-and-mix" chemistry; however, relatively harsh conditions were necessary for final product cleavage. Perspective for the application of different solid-phase approaches in heterocycle library synthesis was thus obtained by demonstration of the respective utility of the three supports for preparation of pyrrolo[3,2-e][1,4]diazepin-2-one.  相似文献   

15.
Since Gomberg's discovery of radicals as chemical entities, the interest around them has increased through the years. Nowadays, radical chemistry is used in the synthesis of 75% of all polymers, inevitably establishing a close relationship with Solid-Phase Organic Synthesis. More recently, the interest of organic chemists has shifted towards the application of usual "in-solution" radical chemistry to the solid-phase, ranging from the use of supported reagents for radical reactions, to the development of methodologies for the synthesis of small molecules or potential libraries. The aim of this review is to put in perspective radical chemistry, moving it away from its origin as a synthetic means for solid supports, to becoming a useful tool for the synthesis of small molecules.  相似文献   

16.
Solid-phase extraction for combinatorial libraries   总被引:3,自引:0,他引:3  
Solid-phase extraction (SPE) has during the last three years emerged as a convenient method for the purification of compound libraries prepared by solution synthesis. The widespread use of SPE in combinatorial chemistry can be explained by straightforward SPE method development facilitated by the availability of numerous commercial SPE resins. High-speed automated SPE is readily accomplished by taking advantage of commercial laboratory robot systems. The present review summarizes and discusses advancements made in the use of different SPE resins and molecule tagging techniques for optimization of ion-exchange, reversed-phase, normal-phase and fluorous-phase SPE in combinatorial chemistry.  相似文献   

17.
A microwave-assisted synthesis of 3,5- and 1,3,5-substituted hydantoins starting from various resins for solid-phase combinatorial chemistry has been developed. The hydantoins were synthesized from pre-loaded resins with amino acids via treatment with isocyanate or phenylisocyanate and subsequent intramolecular cyclization. Both reactions were performed under microwave irradiation. We studied the cyclative cleavage leading to hydantoin compounds dependent on the nature of the amino acid and the nucleofuge properties of the resin.  相似文献   

18.
综述了用于固相合成及组合化学的高聚物载体的制备方法、特征、应用和最新进展,重点介绍了目前广泛用作固相载体的交联聚苯乙烯树脂、聚酰胺树脂和TentaGel树脂,并对几类新型载体如聚乙二醇、聚四氢呋喃衍生物交联剂改性的聚苯乙烯树脂、非芳环体系的POEPOP,树脂和SPOCC树脂作了简要的概述。  相似文献   

19.
As part of the dramatic changes associated with the need for preparing compound libraries in pharmaceutical and agrochemical research laboratories, industry searches for new technologies that allow for the automation of synthetic processes. Since the pioneering work by Merrifield polymeric supports have been identified to play a key role in this field however, polymer-assisted solution-phase synthesis which utilizes immobilized reagents and catalysts has only recently begun to flourish. Polymer-assisted solution-phase synthesis has various advantages over conventional solution-phase chemistry, such as the ease of separation of the supported species from a reaction mixture by filtration and washing, the opportunity to use an excess of the reagent to force the reaction to completion without causing workup problems, and the adaptability to continuous-flow processes. Various strategies for employing functionalized polymers stoichiometrically have been developed. Apart from reagents that are covalently or ionically attached to the polymeric backbone and which are released into solution in the presence of a suitable substrate, scavenger reagents play an increasingly important role in purifying reaction mixtures. Employing functionalized polymers in solution-phase synthesis has been shown to be extremely useful in automated parallel synthesis and multistep sequences. So far, compound libraries containing as many as 88 members have been generated by using several polymer-bound reagents one after another. Furthermore, it has been demonstrated that complex natural products like the alkaloids (+/-)-oxomaritidine and (+/-)-epimaritidine can be prepared by a sequence of five and six consecutive polymer-assisted steps, respectively, and the potent analgesic compound (+/-)-epibatidine in twelve linear steps ten of which are based on functionalized polymers. These developments reveal the great future prospects of polymer-assisted solution-phase synthesis.  相似文献   

20.
Microwave-assisted organic synthesis (MAOS) has attained increasing popularity due to recent advancement in the instrumentation of microwave technology. Now, MAOS can be performed under controlled temperature and pressure to yield reproducible results. For combinatorial chemistry,the dramatically increased reaction rate under microwave irradiation at high temperature provides an ideal solution to those sluggish reactions, in particular the combinatorial reactions carried out on solid supports. In this presentation, we describe our results on microwave-assisted solid-phase organic synthesis (MASPOS) applied to the construction of indole libraries such as 5. Compounds 4 were synthesized on the Rink amide resins using IRORI MicroKanTM reactors encoded with a radio-frequency (Rf) tag. The resin-bound terminal alkynes 2, prepared via the amide bond, were cross-coupled with the nitroaryl triflate under the conditions adopted from the solution reactions developed by us1,2. The nitro group of 3 was then reduced and sulfonylated to give 4. Ring closure reactions within 4 with Cu(OAc)2 were examined initially in refluxing DCE for 24 h, but no indole product was detected after cleavage from the resin. Therefore, the same reactions were carried out under microwave irradiation at 200 ℃ for 10 min on a Personal Chemistry Emrys Creator, the desired indoles 5 were obtained in 60-95% overall yields calculated from 1 and in >90% purities in most cases3. It is necessary to mention that the IRORI microreactors cannot tolerate the high temperature and the resin-bound 4 must be transferred to the reaction vials for the microwave-assisted ring closure reactions. A traceless synthesis of an indole library via MASPOS will be discussed as well.4  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号