首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 15 毫秒
1.
An analysis of the crack closure and fatigue crack growth rate have been carried out for an infinitely long poled piezoelectric ceramic strip weakened by a straight hair line internal crack. The ceramic under consideration is assumed to be mechanically more brittle. The crack faces are perpendicular to the poled direction of the strip. The crack faces open in Mode-I deformation on account of in-plane tension applied to the edges of the strip together with either an in-plane electric displacement prescribed on edges of the strip or a uniform constant electric field prescribed on its edges. As a result, a yield zone is formed ahead of each tip of the crack. The yield zones developed are then arrested by applying a normal, cohesive, linearly varying yield point-stress to their rims. For each case, the Fourier transform method is used to find a solution. The resulting integral equations are solved numerically. Expressions are derived for the crack opening displacement and the crack growth rate. The variations in these quantities are plotted in relation to the affecting parameters, viz., the strip thickness, the yield zone length, the electric displacement, and material constants. A case study is presented graphically for PZT-4, PZT-5H, and BaTiO3 ceramics. Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 44, No. 5, pp. 647–664, September–October, 2008.  相似文献   

2.
The multiple-crack problems for piezoelectric ceramics till now have not yet address the crack opening arrest problem. The present work addresses this paucity. A 2-D strip-electro-mechanical yielding model is proposed for a transversely isotropic piezoelectric media weakened by two internal equal collinear straight cracks. The infinite boundary is prescribed with combined uniform constant in-plane mechanical and electrical loads. Developed mechanical and electric strip zones are arrested by prescribing over their rims uniform, normal, cohesive yield point stress and saturation limit electric displacement. Two cases are considered when saturation zone is bigger than developed yield zone and vice versa. Stroh formulation together with complex variable technique is employed to obtain the solution. Closed form expressions are derived for saturation zone length, yield zone length, crack opening displacement (COD), crack opening potential jump (COP) and energy release rate (ERR). An illustrative numerical study is prescribed to determine the effect of various parameters on the crack growth arrest and presented graphically. The results reveal that the model is capable of crack arrest under small-scale mechanical and electric yielding.  相似文献   

3.
The problem of an unbounded plate weakened by three quasi-static coplanar and collinear straight cracks: two semi-infinite cracks and a finite crack situated symmetrically between two semi-infinite cracks, is investigated. The plate is subjected to uniform unidirectional in-plane tension at infinite boundary. Developed plastic zones are arrested by distributing cohesive yield point stress over their rims. The solution is obtained using complex variable technique. Closed form analytic expressions are derived for load bearing capacity and crack-tip-opening displacement (CTOD). A case study is presented for CTOD and load bearing capacity versus crack length, plastic zone length and inter-crack distance etc. Results are presented graphically and analyzed.  相似文献   

4.
Analytical study for electromagnetothermoelastic behaviors of a hollow cylinder composed of functionally graded piezoelectric material (FGPM), placed in a uniform magnetic field, subjected to electric, thermal and mechanical loads are presented. For the case that the electric, magnetic, thermal and mechanical properties of the material obey an identical power law in the radial direction, exact solutions for electric displacement, stresses, electric potential and perturbation of magnetic field vector in the FGPM hollow cylinder are determined by using the infinitesimal theory of electromagnetothermoelasticity. Some useful discussions and numerical examples are presented to show the significant influence of material inhomogeneity, and adopting a certain value of the inhomogeneity parameter β and applying suitable electric, thermal and mechanical loads can optimize the FGPM hollow cylindrical structures. This will be of particular importance in modern engineering design.  相似文献   

5.
A strip-saturation model is proposed for a transversely isotropic piezoelectric plane weakened by two collinear equal cracks, when developed saturation zones at the interior tips of the cracks get coalesced. The plane is subjected to unidirectional, normal (to the crack length) in-plane tension and electric displacement. The developed saturation zones are arrested by distributing over their rims the normal, cohesive, unidirectional saturation-limit electrical displacement. The solution is obtained using Stroh formulation and complex variable technique. Closed form expressions are derived for crack opening displacement (COD), crack potential drop (COP), field intensity factors, length of saturation zone, energy release rate. Case study carried out for PZT-4 to show the effects of inter-crack distance on the stress intensity factor. The variations of energy release rates are plotted for PZT-4, PZT-5H and BaTiO3 to study the effects of the geometry of the two cracks.  相似文献   

6.
We consider the two‐dimensional elasticity problem for an elastic body with a crack under unilateral constraints imposed at the crack. We assume that both the Signorini condition for non‐penetration of the crack faces and the condition of given friction between them are fulfilled. The problem is non‐linear and can be described by a variational inequality. Varying the shape of the crack by a local coordinate transformation of the domain, the first derivative of the energy functional to the problem with respect to the crack length is obtained, which gives the criterion for the crack growing. The regularity of the solution is discussed and the singular solution is performed. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

7.
A modified Dugdale model solution is obtained for an elastic-perfectly-plastic plate weakened by one internal and two external straight collinear hairline cracks. The tension applied to the infinite boundary of the plate opens the rims of cracks with forming a plastic zone ahead of each tip of the internal crack and also at each finitely distant tip of the two external cracks. The developed plastic zones are closed by normal cohesive linearly varying yield-point stress distributions applied to their rims. The problem is solved using the complex-variable technique. A case study is carried out to find the load required to prevent the cracks from further growing with respect to affecting parameters. The results obtained are reported graphically and analyzed.  相似文献   

8.
In this paper, we combine the Muskhelishvili's complex variable method and boundary collocation method, and choose a set of new stress function based on the stress boundary condition of crack surface, the higher precision and less computation are reached. This method is applied to calculating the stress intensity factor for a finite plate with an inclined crack. The influence of θ (the obliquity of crack) on the stress intensity factors, as well as the number of summation terms on the stress intensity factor are studied and graphically represented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号