首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study the phase diagram of the two-dimensional anisotropic next-nearest neighbor Ising (ANNNI) model by comparing the time evolution of two distinct spin configurations submitted to the same thermal noise. We clearly see several dynamical transitions between ferromagnetic, paramagnetic, antiphase, and floating phases. These dynamical transitions seem to occur rather close to the transition lines determined previously in the literature.  相似文献   

2.
The phase diagram of the two-dimensional lattice-gas ANNNI model is investigated using the cluster transfer-matrix method. The numerical calculations have shown commensurate, disordered, and floating incommensurate phases. The properties of the incommensurate phase are studied in detail and the position of the Lifshitz point is discussed.  相似文献   

3.
We have investigated the one-dimensional spin-1/2 axial next-nearest-neighbour Ising (ANNNI) model in two orthogonal magnetic fields at zero temperature. There are four different possible ground state configurations for the ANNNI model in a longitudinal field, in the thermodynamic limit. The inclusion of a transverse field introduces quantum fluctuations which destroy the existing spin order along certain critical lines. The effects of the fluctuations in three of the four ordered regions were investigated using the finite-size scaling technique. The phase boundaries of the ANNNI model in two orthogonal magnetic fields were thus determined numerically. For certain limits of the Hamiltonian we compared the obtained results with the existing literature and our results were in good agreement with the results in the existing literature.  相似文献   

4.
A spin-1/2 system on a honeycomb lattice is studied. The interactions between nearest neighbors are of XX, YY or ZZ type, depending on the direction of the link; different types of interactions may differ in strength. The model is solved exactly by a reduction to free fermions in a static Z2 gauge field. A phase diagram in the parameter space is obtained. One of the phases has an energy gap and carries excitations that are Abelian anyons. The other phase is gapless, but acquires a gap in the presence of magnetic field. In the latter case excitations are non-Abelian anyons whose braiding rules coincide with those of conformal blocks for the Ising model. We also consider a general theory of free fermions with a gapped spectrum, which is characterized by a spectral Chern number ν. The Abelian and non-Abelian phases of the original model correspond to ν = 0 and ν = ±1, respectively. The anyonic properties of excitation depend on ν mod 16, whereas ν itself governs edge thermal transport. The paper also provides mathematical background on anyons as well as an elementary theory of Chern number for quasidiagonal matrices.  相似文献   

5.
We show that the random-axis model lends itself to a systematic large-N calculation. The model shows different behavior below and above four dimensions. The equation of state is derived and discussed in terms of “Arrott” plots. Higher-order terms in the disorder, when summed, have a crucial effect on the susceptibility which is found to be finite below four dimensions (and above four dimensions for strong disorder). A spin-glass to paramagnetic phase transition is characterized by the vanishing of the Edwards-Anderson order parameter, which differs from zero in the spin-glass phase. A cusp in the specific-heat and susceptibility is seen across the transition. The cross-over exponent and other exponents of interest are calculated. Above four dimensions a third phase appears for weak disorder and low-temperature ferromagnetic in nature. The transverse and longitudinal susceptibilities are discussed. Whereas the ferromagnetic transition is characterized by mean-field exponents, the ferromagnetic to spin-glass exponents are equal to their counterparts in the non-random system in d ? 2 dimensions. This is shown to originate from an effective random field proportional to the EA order parameter. The flow equations in the large-N limit are also discussed.  相似文献   

6.
We investigate complex spin structures of frustrated two-dimensional Cr, Mn, and Fe monolayer magnets on a triangular lattice provided by the Cu(111) substrate. First we establish a zero-temperature phase diagram of possible spin structures on the basis of the classical Heisenberg model up to the third-nearest neighbor exchange interaction. Second we carried out first-principles total energy calculations on the basis of the vector-spin density formulation of the density functional theory using the full potential linearized augmented plane wave (FLAPW) method in film geometry for a set of complex non-collinear spin structures. We found, the ground state of Fe is ferromagnetic, Cr exhibits a coplanar, two-dimensional non-collinear 120 Néel state and Mn a three-dimensional non-collinear ground state, the 3Q-state. Incommensurate spin-spiral states are expected for a FeMn alloy on Cu(111). We employ the constrained local moment method to estimate the exchange parameters of the model Hamiltonians. We show that for Mn higher-order spin interactions are the origin of the 3Q-state for Mn. The combination of ab initio calculations and model Hamiltonians provides a powerful tool to investigate the magnetic structures of complex magnetic systems.  相似文献   

7.
The behavior of the axial next-nearest-neighbor Ising (ANNNI) model in an external magnetic field is investigated using a low-temperature expansion of the free energy. Unusual cascades of phase transitions and complete devil's staircases, unexpected for the ANNNI model, are found.  相似文献   

8.
We prove that the mean square displacement of a tracer particle grows as logt for larget. We point out a connection to the low-temperature floating phase of the ANNNI model.  相似文献   

9.
We propose a scheme for constructing classical spin Hamiltonians from Hunds coupled spin-fermion models in the limit JH/t →∞. The strong coupling between fermions and the core spins requires self-consistent calculation of the effective exchange in the model, either in the presence of inhomogeneities or with changing temperature. In this paper we establish the formalism and discuss results mainly on the “clean” double exchange model, with self consistently renormalised couplings, and compare our results with exact simulations. Our method allows access to system sizes much beyond the reach of exact simulations, and we can study transport and optical properties of the model without artificial broadening. The method discussed here forms the foundation of our papers [Phys. Rev. Lett. 91, 246602 (2003), and Phys. Rev. Lett. 92, 126602 (2004)].  相似文献   

10.
For the three-dimensional ANNNI model a converging expression for the curve of the coexistence of the (3.3)-phase and ferromagnetic phase is derived for low temperatures using a new extension of the Peierls contour method.  相似文献   

11.
A bilayer spin-1/2 Ising model consisting of two superposed Bethe lattices with antiferromagnetic/ferromagnetic interactions is studied by the use of exact recursion relations in a pairwise approach in the presence of an external staggered magnetic field. Besides the ground state phase diagrams calculated in different possible planes of the model parameters space, the thermal variations of the order-parameters and the free energy are investigated to obtain the temperature-dependent phase diagrams of the model for different values of the coordination numbers q. Our calculations reveal that depending on the strength of the model parameters, the model exhibits a variety of interesting phase transitions and therefore phase diagrams.  相似文献   

12.
The phase transitions in the two-dimensional ferro- and antiferromagnetic Potts models with q = 3 states of spin on a triangular lattice are studied using cluster algorithms and the classical Monte Carlo method. Systems with linear sizes L = 20–120 are considered. The method of fourth-order Binder cumulants and histogram analysis are used to discover that a second-order phase transition occurs in the ferromagnetic Potts model and a first-order phase transition takes place in the antiferromagnetic Potts model. The static critical indices of heat capacity (α), magnetic susceptibility (γ), magnetization (β), and correlation radius index (ν) are calculated for the ferromagnetic Potts model using the finite-size scaling theory.  相似文献   

13.
The mean-field theory of an Ising magnet with infinitely weak, infinitely long-range potentials of arbitrary sign is presented in terms of a variational principle for the magnetization. Previous studies of the theory have revealed paramagnetic, ferromagnetic, and modulated phases. For a particular choice of potential, which is an obvious continuous version of the between-plane ANNNI model interaction, exact solutions of the stationary condition implied by the variational principle are obtained. This leads us to formulate a trial magnetization to well describe the modulated phase in general. To illustrate the utility of the trial magnetization, both analytic and numerical calculations are performed, which determine the wavenumber in certain portions of the modulated phase for the above-mentioned potential.  相似文献   

14.
The phase transitions in 2D ferro- and antiferromagnetic Potts models with number of spin states q = 3 on a triangular lattice are investigated by the cluster and classical Monte Carlo methods. Systems with linear sizes L = 20–120 are considered. Fourth-order Binder cumulants and histogram data analysis are used to show that second- and first-order phase transitions are observed in the ferromagnetic and antiferromagnetic Potts models, respectively. The static critical indices are calculated for specific heat α, susceptibility γ, magnetization β, and correlation length ν on the basis of finite-size scaling theory for a ferromagnetic Potts model.  相似文献   

15.
The transverse spin-2 Ising ferromagnetic model with a longitudinal crystal-field is studied within the mean-field theory based on Bogoliubov inequality for the Gibbs free energy. The ground-state phase diagram and the tricritical point are obtained in the transverse field Ω/z J-longitudinal crystal D/zJ field plane. We find that there are the first order-order phase transitions in a very smallrange of D/zJ besides the usual first order-disorder phase transitions and the second order-disorder phase transitions.  相似文献   

16.
The thermodynamics of the unitary (normalized spin) quantum and classical Ising models with skew magnetic field, for |J|β?0.9, is derived for the ferromagnetic and antiferromagnetic cases. The high-temperature expansion (β-expansion) of the Helmholtz free energy is calculated up to order β7 for the quantum version (spin S≥1/2) and up to order β19 for the classical version. In contrast to the S=1/2 case, the thermodynamics of the transverse Ising and that of the XY model for S>1/2 are not equivalent. Moreover, the critical line of the T=0 classical antiferromagnetic Ising model with skew magnetic field is absent from this classical model, at least in the temperature range of |J|β?0.9.  相似文献   

17.
18.
The Hamiltonian limit of the ANNNI model in (1+1) dimensions is studied by using the Quantum Statistical Monte Carlo method. Even if recent results suggest that Monte Carlo calculations may prove unreliable in the study of this system, the phase diagram of the quantum version of the model was successfully obtained. In particular, the clusive transitions between the disordered, the floating incommensurate and the degenerate 2, 2 are determined by analysing the correlation length behaviour in finite lattices.Partially supported by CONICET Argentina  相似文献   

19.
The single-particle densityρ(r) of a system of fermions can be calculated in a tractable way as the Laplace inverse of the Bloch density describing the system. The complex integrals involved can be solved very easily by the saddle-point method. The semiclassical nature of this approach is illustrated in the simple example of the single-particle level density of a harmonic oscillator potential. It is then applied to calculate the total energy of particles in different mean field potentials. The exact Bloch density being generally unknown, different approximate forms are used in our calculations which correspond to a partial resummation of the Wigner-Kirkwood?-expansion. The resulting local densities reproduce the exact density distributions on the average, without quantal oscillations. They are well defined everywhere, even beyond the classical turning point, in contrast to the original Wigner-Kirkwood approach.  相似文献   

20.
The characteristic influences of size S, exchange interaction and transverse field on the longitudinal and transverse magnetizations of a ferroelectric small particle described by the transverse Ising model are investigated by the use of the standard mean-field theory. In particular, the longitudinal magnetization of a nanoparticle is strongly affected by the surface situations. The effective exponent βeff of the longitudinal magnetization is also studied. We find some characteristic phenomena of βeff, depending on the values of S and the ratios of the physical parameters. In relation of recent investigations, the thermal variations of longitudinal and transverse magnetizations in the nanoparticle, consisting of a ferromagnetic core with size S=3 surrounded by a ferromagnetic surface shell with an antiferromagnetic inter-shell coupling, are examined and some typical ferrimagnetic behaviors are found in them. In relation to these phenomena, the effects of surface dilution on the magnetizations are investigated and some novel features are found in the system with size S=3 surrounded by such a ferromagnetic diluted surface shell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号