首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
UVA, which accounts for approximately 95% of solar UV radiation, can cause mutations and skin cancer. Based mainly on the results of our study, this paper summarizes the mechanisms of UVA-induced DNA damage in the presence of various photosensitizers, and also proposes a new mechanism for its chemoprevention. UVA radiation induces DNA damage at the 5'-G of 5'-GG-3' sequence in double-stranded DNA through Type I mechanism, which involves electron transfer from guanine to activated photosensitizers. Endogenous sensitizers such as riboflavin and pterin derivatives and an exogenous sensitizer nalidixic acid mediate DNA photodamage via this mechanism. The major Type II mechanism involves the generation of singlet oxygen from photoactivated sensitizers, including hematoporphyrin and a fluoroquinolone antibacterial lomefloxacin, resulting in damage to guanines without preference for consecutive guanines. UVA also produces superoxide anion radical by an electron transfer from photoexcited sensitizers to oxygen (minor Type II mechanism), and DNA damage is induced by reactive species generated through the interaction of hydrogen peroxide with metal ions. The involvement of these mechanisms in UVA carcinogenesis is discussed. In addition, we found that xanthone derivatives inhibited DNA damage caused by photoexcited riboflavin via the quenching of its excited triplet state. It is thus considered that naturally occurring quenchers including xanthone derivatives may act as novel chemopreventive agents against photocarcinogenesis.  相似文献   

2.
The photosensitized DNA damage caused by dihydroxoP(V)tetraphenylporphyrin (P(V)TPP), a cationic water-soluble porphyrin, was examined. The study of near-infrared emission measurements demonstrated the photosensitized singlet oxygen ((1)O(2)) generation by P(V)TPP (quantum yield: 0.28 in ethanol). The fluorescence quenching of P(V)TPP by DNA showed the electron transfer (ET) from nucleobases to photoexcited P(V)TPP. These results have shown that P(V)TPP has ability to damage DNA through dual mechanisms, (1)O(2) generation and ET. Under aerobic conditions, P(V)TPP photosensitized damage was more severe for single-stranded DNA compared to its double-stranded counterpart. Photoexcited P(V)TPP damaged every guanine residue in single-stranded DNA. HPLC measurements confirmed the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo), an oxidized product of 2'-deoxyguanosine, and showed that the yield of 8-oxodGuo in single-stranded DNA is larger than that in double-stranded DNA. The guanine-specific DNA damage and the enhancement in single-stranded DNA suggest that the (1)O(2) generation mainly contributes to the mechanism of DNA photodamage by P(V)TPP. Absorption spectrum measurements suggested the interaction between P(V)TPP and DNA. This interaction is expected to enhance the (1)O(2)-mediated DNA damage since the lifetime of (1)O(2) is very short. On the other hand, for double-stranded DNA, photosensitized damage at consecutive guanines was much less pronounced. Because the consecutive guanines act as a hole trap, this DNA-damaging pattern suggests the partial involvement of photoinduced ET. However, DNA damage by ET was not a main mechanism, possibly due to the reverse ET. In conclusion, P(V)TPP induces guanine specific photooxidation mainly via (1)O(2) generation. The interaction with DNA and the energy level of the photoexcited porphyrin may be advantageous for (1)O(2)-mediated DNA damage rather than ET mechanism.  相似文献   

3.
UVA contributes to skin cancer by solar UV light. Photosensitizers are believed to play an important role in UVA carcinogenesis. We investigated the mechanism of DNA damage induced by photoexcited xanthone (XAN) analogues (XAN, thioxanthone [TXAN] and acridone [ACR]), exogenous photosensitizers, and the relationship between the DNA-damaging abilities and their highest occupied molecular orbital (HOMO) energies. DNA damage by these photosensitizers was examined using 32P-labeled DNA fragments obtained from the p53 tumor suppressor gene. Photoexcited XAN caused DNA cleavage specifically at 5'-G of the GG sequence in the double-stranded DNA only when the DNA fragments were treated with piperidine, suggesting that DNA cleavage is due to base modification with little or no strand breakage. With denatured single-stranded DNA, the extent of XAN-sensitized photodamage was decreased. An oxidative product of G, 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dGuo), was formed by photoexcited XAN, and the 8-oxo-dGuo formation was decreased in single-stranded DNA. TXAN and ACR induced DNA photodamage as did XAN, although the order of DNA-damaging ability was XAN > TXAN > ACR. These findings suggest that photoexcited XAN analogues induce nucleobase oxidation at 5'-G of GG sequence in double-stranded DNA through electron transfer. The HOMO energies of these photosensitizers, estimated from ab initio molecular orbital (MO) calculation, decreased in the following order: XAN > TXAN > ACR. Extents of DNA damage increased exponentially with the HOMO energies of XAN analogues. This study suggests that DNA-damaging abilities of photosensitizers can be estimated from their HOMO energies.  相似文献   

4.
The effect of the interaction between DNA and the photosensitizer on photosensitized singlet oxygen (1O2) generation was investigated using DNA-binding alkaloids, berberine and palmatine. These photosensitizers were bound to DNA by electrostatic force. Near-infrared luminescence measurement demonstrated that the photoexcited alkaloids can generate 1O2 only when the photosensitizers are bound to DNA. A fluorescence decay study showed significant enhancement of the lifetime of their photoexcited state with the DNA binding. A calculation study suggested that the electrostatic interaction with DNA inhibits the quenching of the photoexcited state of these alkaloids via intramolecular electron transfer, leading to the prolongation of the lifetime of their excited state. This effect should enhance their intersystem crossing and the yield of energy transfer to molecular oxygen. The results show that the electrostatic interaction with DNA significantly affects the 1O2 generation activity of a photosensitizer. In addition, this interaction may be applied to the control and the design of photosensitizers for medical applications such as photodynamic therapy.  相似文献   

5.
Methotrexate (MTX), an antineoplastic agent, demonstrates phototoxicity. The mechanism of damage to biomacromolecules induced by photoirradiated MTX was examined using 32P-labeled DNA fragments obtained from a human gene. Photoirradiated MTX caused DNA cleavage specifically at the underlined G in 5'-GG and 5'-GGG sequences in double-stranded DNA only when the DNA fragments were treated with piperidine, which suggests that DNA cleavage was caused by base modification with little or no strand breakage. With denatured single-stranded DNA the damage occurred at most guanine residues. The amount of formation of 8-hydroxy-2'-deoxyguanosine (8-oxodGuo), an oxidative product of 2'-deoxyguanosine, in double-stranded DNA exceeded that in single-stranded DNA. These results suggest that photoirradiated MTX participates in 8-oxodGuo formation at the underlined G in 5'-GG and 5'-GGG sequences in double-stranded DNA through electron transfer, and then 8-oxodGuo undergoes further oxidation into piperidine-labile products. Fluorescence measurement, high-pressure liquid chromatography and mass spectrometry have demonstrated that photoexcited MTX is hydrolyzed into 2,4-diamino-6-(hydroxymethyl)pteridine (DHP). DNA damage induced by DHP was observed in a similar manner as was the damage induced by MTX. The extent of DNA damage and the formation of 8-oxodGuo by DHP were much larger than those induced by MTX. The kinetic analysis, based on the time course of DNA oxidation by photoirradiated MTX, suggests that DNA damage is caused by photoexcited DHP rather than by photoexcited MTX. In conclusion, photoexcited MTX undergoes hydrolysis through intramolecular electron transfer, resulting in the formation of DHP, which exhibits a phototoxic effect caused by oxidation of biomacromolecules through photoinduced electron transfer.  相似文献   

6.
Using water-soluble 1,8-naphthalimide derivatives, the mechanisms of photosensitized DNA damage have been elucidated. Specifically, a comparison of rate constants for the photoinduced relaxation of supercoiled to circular DNA, as a function of dissolved halide, oxygen and naphthalimide concentration, has been carried out. The singlet excited states of the naphthalimide derivatives were quenched by chloride, bromide and iodide. In all cases the quenching products were naphthalimide triplet states, produced by induced intersystem crossing within the collision complex. Similarly, the halides were found to quench the triplet excited state of the 1,8-naphthalimide derivatives by an electron transfer mechanism. Bimolecular rate constants were < 10(5) M-1 s-1 for quenching by bromide and chloride. As expected from thermodynamic considerations quenching by iodide was 6.7 x 10(9) and 8.8 x 10(9) M-1 s-1 for the two 1,8-naphthalimide derivatives employed. At sufficiently high ground-state concentration self-quenching of the naphthalimide triplet excited state also occurs. The photosensitized conversion of supercoiled to circular DNA is fastest when self-quenching reactions are favored. The results suggest that, in the case of 1,8-naphthalimide derivatives, radicals derived from quenching of the triplet state by ground-state chromophores are more effective in cleaving DNA than reactive oxygen species or radicals derived from halogen atoms.  相似文献   

7.
Abstract— Photobiological activities of the benzo-spaced psoralen analog furonaphthopyranone 3 have been investigated in cell-free and cellular DNA. The molecular geometry parameters of 3 suggest that it should not form interstrand crosslinks with DNA. With cell-free DNA no evidence for crosslinking but also not for monoadduct formation was obtained; rather, the unnatural furocoumarin 3 induces oxidative DNA modifications under near-UVA irradiation. The enzymatic assay of the photosensitized damage in cell-free PM2 DNA revealed the significant formation of lesions sensitive to formamidopyrimidine DNA glyco-sylase (Fpg protein). In the photooxidation of calf thymus DNA by the furonaphthopyranone 3, 0.29±0.02% 8-oxo-7,8-dihydroguanine (8-oxoGua) was observed. With 2'-deoxyguanosine (dGuo), the guanidine-releasing photooxidation products oxazolone and oxoimidazolidine were formed predominately, while 8-oxodGuo and 4-HO-8-oxodGuo were obtained in minor amounts. The lack of a significant D2O effect in the photooxidation of DNA and dGuo reveals that singlet oxygen (type II process) plays a minor role; control experiments with tert -butanol and mannitol confirm the absence of hydroxyl radicals as oxidizing species. The furonaphthopyranone 3 (Ered= -1.93±0.03V) should act in its singlet-excited state as electron acceptor for the photooxidation of dGuo (δGET ca – kcal/mol), which corroborates photoinduced electron transfer (type I) as a major DNA-oxidizing mechanism. A comet assay in Chinese hamster ovary (CHO) AS52 cells demonstrated that the psoralen analog 3 damages cellular DNA upon near-UVA irradiation; however, no photosensitized mutagenicity was observed in CHO AS52 cell cultures  相似文献   

8.
As a continuation of studies carried out in this laboratory [2] on the properties of selenophene and its methyl derivatives as substrates for excited carbonyl compounds and for methylmaleic anhydride derivatives in photosensitized reactions benzo[b]selenophene and selenophthene were tested as well. The latter were found to be inert in oxetane formation but good substrates in photosensitized reactions.  相似文献   

9.
Thiopurines were examined for their ability to produce singlet oxygen ((1)O(2)) with UVA light. The target compounds were three thiopurine prodrugs, azathioprine (Aza), 6-mercaptopurine (6-MP) and 6-thioguanine (6-TG), and their S-methylated derivatives of 6-methylmercaptopurine (me6-MP) and 6-methylthioguanine (me6-TG). Our results showed that these thiopurines were efficient (1)O(2) sensitizers under UVA irradiation but rapidly lost their photoactivities for (1)O(2) production over time by a self-sensitized photooxidation of sulfur atoms in the presence of oxygen and UVA light. The initial quantum yields of (1)O(2) production were determined to be in the range of 0.30-0.6 in aqueous solutions. Substitution of a hydrogen atom with a nitroimidazole or methyl group at S decreased the efficacy of photosensitized (1)O(2) production as found for Aza, me6-MP and me6-TG. (1)O(2)-induced formation of 8-oxo-7,8-dihydro-2'-dexyguanosine (8-oxodGuo) was assessed by incubation of 6-methylthiopurine/UVA-treated calf thymus DNA with human repair enzyme 8-oxodGuo DNA glycosylase (hOGG1), followed by apurinic (AP) site determination. Because more 8-oxodGuo was formed in Tris D(2)O than in Tris H(2)O, (1)O(2) is implicated as a key species in the reaction. These findings provided quantitative information on the photosensitization efficacy of thiopurines and to some extent revealed the correlations between photoactivity and phototoxicity.  相似文献   

10.
Abstract— The levels of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) in purified calf thymus DNA and HeLa cells were measured following exposure to either UVC, UVB or UVA wavelengths. This DNA damage was quantitated using HPLC coupled with an electrochemical detector. The 8-oxodGuo was induced in purified DNA in a linear dose-dependent fashion by each portion of the UV spectrum at yields of 100, 0.46 and 0.16 8-oxodGuo per 105 2'-deoxyguanosine (dGuo) per kJ/m2 for UVC, UVB and UVA, respectively. However, the amount of 8-oxodGuo in HeLa cells irradiated with these UV sources decreased to approximately 2.0, 0.013 and 0.0034 8-oxodGuo per 105 dGuo per kJ/m2, respectively. In contrast, the levels of cyclobutyl pyrimidine dimers were similar in both irradiated DNA and cells. Therefore, 8-oxodGuo is induced in cells exposed to wavelengths throughout the UV spectrum although it appears that protective precesses exist within cells that reduce the UV-induced formation of this oxidative DNA damage. Cell survival was also measured and the number of dimers or 8-oxodGuo per genome per lethal event determined. These calculations are consistent with the conclusion that dimers play a major role in cell lethality for UVC- or UVB-irradiated cells but only a minor role in cells exposed to UVA wavelengths. In addition, it was found that the relative yield of 8-oxodGuo to dimers increased nearly 1000-fold in both UVA-irra-diated cells and DNA compared with cells subjected to either UVC or UVB. These results are supportive of the hypothesis that 8-oxodGuo, and possible other forms of oxidative damage, play an important role in the induction of biological effects caused by wavelengths in the UVA portion of the solar spectrum.  相似文献   

11.
β-Carbolines (βCs) are a group of alkaloids present in many plants and animals. It has been suggested that these alkaloids participate in a variety of significant photosensitized processes. Despite their well-established natural occurrence, the main biological role of these alkaloids and the mechanisms involved are, to date, poorly understood. In the present work, we examined the capability of three important βCs (norharmane, harmane and harmine) and two of its derivatives (N-methyl-norharmane and N-methyl-harmane) to induce DNA damage upon UV-A excitation, correlating the type and extent of the damage with the photophysical characteristics and DNA binding properties of the compounds. The results indicate that DNA damage is mostly mediated by a direct type-I photoreaction of the protonated βCs after non-intercalative electrostatic binding. Reactive oxygen species such as singlet oxygen and superoxide are not involved to a major extent, as indicated by the only small influence of D(2)O and of superoxide dismutase on damage generation. An analysis with repair enzymes revealed that oxidative purine modifications such as 8-oxo-7,8-dihydroguanine, sites of base loss and single-strand breaks (SSB) are generated by all βCs, while only photoexcited harmine gives rise to the formation of cyclobutane pyrimidine dimers as well.  相似文献   

12.
Riboflavin can be photosensitized to produce reactive oxygen species. In the present study, a DNA damage assay was developed based on the photo reaction of riboflavin. In this test system, oxyresveratrol showed higher DNA protective effect than the well-known antioxidants Trolox and ascorbic acid. The results suggest potential applications for oxyresveratrol as an anti-aging agent and a riboflavin stabilizer.  相似文献   

13.
Based on the synthesis of DNA modified with photosensitizers, direct spectroscopic measurements of the hole transfer in DNA, and quantification of the yield of the DNA oxidative damage, the reaction rate of the radical anion of the photosensitizer was demonstrated to be critically important in determining the efficiency of photosensitized DNA damage.  相似文献   

14.
Narrowband UVB (NB-UVB) is a newly developed UVB source that, in addition to the previously used broadband UVB (BB-UVB), has been effectively used in phototherapy of various skin diseases. Besides its therapeutic effectiveness, NB-UVB also has some adverse effects that should be evaluated. As with all phototherapies, the photocarcinogenic potential of NB-UVB is the major concern. To assess the carcinogenic potential we measured the DNA damage induced by the two UVB sources because exposure of cells to UVB directly or indirectly induces DNA damage such as cyclobutane pyrimidine dimers (CPD) or 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo), respectively. These types of DNA damage cause mutations of oncogenes and tumor suppressor genes, which can lead to photocarcinogenesis. In the present study we measured the yield of CPD and the oxidative DNA damage marker, 8-oxodGuo, in organ-cultured human skin and in mouse skin after exposure to NB-UVB or BB-UVB at therapeutically equivalent doses. We show that a 10-fold higher dose of NB-UVB yields a similar amount of CPD compared with BB-UVB in two types of samples examined. In contrast to CPD, the formation of 8-oxodGuo after irradiation with NB-UVB at a 10-fold higher dose is 1.5-3 times higher than that caused by BB-UVB. These results suggest that although NB-UVB at equivalent erythema-edema doses is not more potent in inducing CPD formation than is BB-UVB, NB-UVB may generate a higher yield of oxidized DNA damage.  相似文献   

15.
Photochemical and photobiological properties of the im-peratorin-derived furocoumarin hydroperoxides la, la', 2a and 2a’have been investigated. Irradiation (350 nm) of the hydroperoxide 2a’afforded the alcohol 2b (2%), a diastereomeric mixture of the hydroxy epoxide 2c (40%; diastereomeric ratio = 80:20) and the epoxide 2d (8%). The formation of these products was rationalized in terms of homolysis of the hydroperoxide bond initiated by intramolecular energy transfer from the photoexcited furocoumarin chromophore. The quantum yields for the photolytic decomposition of hydroperoxides were estimated to be in the range of 0.03–0.85 and decreased in the order 2a ? 2a′? 1a′≥ 1a. The involvement of hydroxyl radicals in these reactions was established by trapping experiments with benzene and spectroscopic evidence was obtained by EPR spin trapping with 5,5-di-methylpyrroline-N-oxide. Fluorescence titration, DNA melting and linear dichroism studies of furocoumarins indicated that these compounds undergo efficient com-plexation and also intercalation into the DNA. The binding parameters K (intrinsic binding constant) and l/n (frequency of binding sites) of complexes between furocoumarin derivatives and DNA were determined to be in the range of 3900–23 900 M-l and 0.017–0.045. The pho-toreaction of la’and lb’with 2′-deoxyguanosine (dGuo) afforded exclusively 7,8-dihydro-8-oxo-2′-deoxy-guanosine (8-oxodGuo), presumably through singlet oxygen, which was formed in a type II photooxidation process. In contrast, the hydroperoxide 2a oxidized dGuo to oxazo-lone as major and 8-oxodGuo as minor products through hydroxyl radicals, which were generated from 2a under photolytic conditions. Interestingly, the photoreactions of furocoumarins with salmon testes DNA showed that the highly reactive (φ= 0.85) hydroperoxide 2a is also most efficient in inducing the mutagenic DNA oxidation product 8-oxodGuo. Hence, the novel furocoumarin hydroperoxide 2a constitutes the first intercalating photo-Fen-ton reagent and serves as convenient hydroxyl radical source for genotoxicity studies.  相似文献   

16.
Abstract— The aim of this investigation is the evaluation of DNA interaction of with tetraruthenated porphyrin (TRP) and of DNA damage in the presence of light. Direct-fluorescence and electronic absorption measurements after incubation of DNA with TRP indicate strong binding between pBR322 DNA or calf thymus DNA with the modified porphyrin. Exposure of pBR322 DNA to TRP (up to 3 μ M ) and light leads to single-strand break formation as determined by the conversion of the supercoiled form (form I) of the plasmid into the nicked circular form (form II). Oxidative DNA base damage was evaluated by the detection of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) after irradiation of calf thymus DNA in the presence of the TRP. The data demonstrated a dose and time dependence with each type of DNA damage. These data indicate (1) a specificity of the binding mode and (2) type I and II photoinduced mechanisms leading to strand scission activity and 8-oxodGuo formation. Accordingly, singlet molecular oxygen formation, after TRP excitation, was confirmed by near-infrared emission. From these investigations a potential application of TRP in photodynamic therapy is proposed.  相似文献   

17.
The influence of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) on riboflavin and UVA-mediated one-electron oxidation of an aqueous aerated solution of 2'-deoxyguanosine (dGuo) has been studied. Using labeled experiments, we have demonstrated that, despite not being able to detect significant amounts of 8-oxodGuo upon one-electron oxidation of dGuo, 8-oxodGuo is indeed produced but is further rapidly degraded to oxidized nucleosides. Evidence is provided showing that an efficient electron transfer reaction from 8-oxodGuo to the guanine radical cation or rather its deprotonated form occurs, giving rise to the specific decomposition of 8-oxodGuo together with the restitution of dGuo. It could be concluded that 8-oxodGuo efficiently protects dGuo from decomposition by the one-electron oxidation reaction.  相似文献   

18.
We developed a facile, cost-effective competitive binding assay for the analysis of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) in DNA, using a polyclonal rabbit antiserum raised against an 8-oxodGuo hapten coupled to bovine serum albumin and radiolabeled synthetic ligand containing multiple 8-oxodGuo residues. This radioimmunoassay (RIA) displays a high affinity for 8-oxodGuo in DNA, with a detection limit of approximately 1 adduct in 10(5) bases of DNA. 8-oxodGuo standards for RIA were quantified by high-performance liquid chromatography and electrochemical detection in DNA diluted in methylene blue and exposed to visible light. As an initial application we quantified 8-oxodGuo in dosimeters deployed at increasing depths in the Southern Ocean during the austral spring of the 1998 field season or at the surface at Palmer Station, Antarctica, throughout the 1999 field season. Cyclobutane pyrimidine dimers (CPD) were quantified using an established RIA. We found that the frequency of both photoproducts decreased with depth. However, CPD induction was attenuated at a faster rate than 8-oxodGuo, correlating with the differential attenuation of solar ultraviolet wavelengths in the water column. CPD induction was closely related with ultraviolet-B radiation (UVB) attenuation, whereas the lower attenuation of 8-oxodGuo suggests that oxidative damage is more closely related to ultraviolet-A radiation (UVA) irradiance. The ratio of 8-oxodGuo: CPD was also found to covary with changes in stratospheric ozone concentrations at Palmer Station. These data demonstrate the usefulness of these assays for environmental photobiology and the potential for their use in studying the relative impacts of UVB versus UVA, including ozone depletion events.  相似文献   

19.
We have investigated the photosensitized monomerization of the cis,syn -cyclobutane dimer of 1,3-di-methylthymine using riboflavin tetraacetate and a 5-deazaflavin derivative as photosensitizer. Although little monomerization of the dimer is induced by photoexcitation of the flavins in the absence of any additives, the flavins can function as an efficient photosensitizer in the presence of magnesium perchlorate. Mechanistic studies involving spectroscopic, quantum-yield and flash-photolysis measurements demonstrated that the photosensitized monomerization exclusively proceeds through electron transfer from the dimer to the triplet flavins complexed with Mg2+. The effects of magnesium perchlorate are compared with those on the chloranil-photosensitized monomerization and also with the effects of HClO4 on the flavin-photosensitized reaction.  相似文献   

20.
Two pyridine substituted beta-cyclodextrins have been synthesized and coordinated to the photoactive metal centres, [Ru(II)(bpy)2] and [Re(I)(CO)3bpy], where bpy is 2,2'-bipyridyl. The photophysical and electrochemical properties of these model complexes have been examined and compared with dinuclear complexes formed when C60 was included between two cyclodextrin cavities of the metallocyclodextrin units. On inclusion of C60, significant quenching of the emission of the luminophores is observed. Concentration and laser power dependence confirm that this quenching is intramolecular. The quenching process is interpreted in terms of a photoinduced electron transfer between the photosensitizer and C60 centre on the basis of spectroscopic and electrochemical evidence. Rate constants of 1.3 +/- 0.1 x 10(8) and 7.0 +/- 0.4 x 10(7) s(-1) have been determined for the Ru and Re based complexes, respectively. Significantly, these large rate constants indicate that that there is substantial electronic communication across the cyclodextrin at least for excited state processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号