首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The experiments are carried out in the system of continuous flow reactors with dielectric-barrier discharge (DBD) for studies on the conversion of natural gas to C2 hydrocarbons through plasma catalysis under the atmosphere pressure and room temperature. The influence of discharge frequency, structure of electrode, discharge voltage, number of electrode, ratio of H2/CH4, flow rate and catalyst on conversion of methane and selectivity of C2 hydrocarbons are investigated. At the same time, the reaction process is investigated. Higher conversion of methane and selectivity of C2 hydrocarbons are achieved and deposited carbons are eliminated by proper choice of parameters. The appropriate operation parameters in dielectric-barrier discharge plasma field are that the supply voltage is 20–40 kV (8.4–40 W), the frequency of power supply is 20 kHz, the structure of (b) electrode is suitable, and the flow of methane is 20–60 mL · min−1. The conversion of methane can reach 45%, the selectivity of C2 hydrocarbons is 76%, and the total selectivity of C2 hydrocarbons and C3 hydrocarbons is nearly 100%. The conversion of methane increases with the increase of voltage and decreases with the flow of methane increase; the selectivity of C2 hydrocarbons decreases with the increase of voltage and increases with the flow of methane increase. The selectivity of C2 hydrocarbons is improved with catalyst for conversion of natural gas to C2 hydrocarbons in plasma field. Methane molecule collision with radicals is mainly responsible for product formation.  相似文献   

2.
The plasma technology served as a tool in unconventional catalysis has been used in natural gas conversion, because the traditional catalytic methane oxidative coupling reaction must be performed at high temperature on account of the stability of methane molecule. The focus of this research is to develop a process of converting methane to C2 hydrocarbons with non-equilibrium plasma technology at room temperature and atmospheric pressure. It was found that methane conversion increased and the selectivity of C2 hydrocarbons decreased with the voltage. The optimum input voltage range was 40-80 V corresponding to high yield of C2 hydrocarbons. Methane conversion decreased and the selectivity of C2 hydrocarbons increased with the inlet flow rate of methane. The proper methane flow rate was 20-40 ml/min (corresponding residence time 10-20 s). The experimental results show that methane conversion was 47% and the selectivity of C2 hydrocarbons was 40% under the proper condition using atmospheric DBD cold plasma technology. It was found that the breakdown voltage of methane VB was determined by the type of electrode and the discharge gap width in this glow discharge reactor. The breakdown voltage of methane VB,min derived from the Paschen law equation was established.  相似文献   

3.
Co/SiO2 and zirconium promoted Co/Zr/SiO2 catalysts were prepared using dielectric-barrier discharge (DBD) plasma instead of the conventional thermal calcination method. Fischer-Tropsch Synthesis (FTS) performances of the catalyst were evaluated in a fixed bed reactor. The results indicated that the catalyst treated by DBD plasma shows the higher FTS activity and yield of heavy hydrocarbons as compared with that treated by the conventional thermal calcination method. Increase in CO conversion was unnoticeable on the Co/SiO2 catalyst, but significant on the Co/Zr/SiO2 catalyst, both prepared by DBD plasma. On the other hand, heavy hydrocarbon selectivity and chain growth probability (α value) were enhanced on all the catalysts prepared by the DBD plasma. In order to study the effect of the DBD plasma treatment on the FTS performance, the catalysts were characterized by N2-physisorption, H2-temperature programed reduction (H2-TPR), H2-temperature-programmed desorption (H2-TPD) and oxygen titration, transmission electron microscope (TEM) and X-ray diffraction (XRD). It was proved that, compared with the traditional calcination method, DBD plasma not only could shorten the precursor decomposition time, but also could achieve better cobalt dispersion, smaller Co3O4 cluster size and more uniform cobalt distribution. However, cobalt reducibility was hindered to some extent in the Co/SiO2 catalyst prepared by DBD plasma, while the zirconium additive prevented significantly the decrease in cobalt reducibility and increased cobalt dispersion as well as the FTS performance.  相似文献   

4.
A zeolite-enhanced plasma methane conversion with pure methane feed using dielectric-barrier discharges (DBDs) at atmospheric pressure has been conducted. This plasma methane conversion over NaX has led to a selective production of light hydrocarbons. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
常压辉光放电等离子体转化CH4制C2烃的研究   总被引:3,自引:0,他引:3  
王达望  马腾才 《化学学报》2006,64(11):1121-1125
采用新型的旋转电极辉光放电反应器, 在常温常压下对辉光等离子体作用下的甲烷转化制C2烃进行了研究. 在氢气共存条件下, 考察了反应器电极的结构、材料, 输入电场峰值电压和反应物流率等参数对甲烷转化率和C2烃单程收率及其选择性的影响规律, 同时比较了不同反应器的能量效率. 结果表明: 在本实验条件下, 金属铜材料好于不锈钢, 螺旋形结构优于三排圆盘结构. CH4转化率和C2烃选择性和收率均随输入电场峰值电压的升高而增大, 随反应物流量的增加而减小. 从CH4转化率、C2烃的收率和选择性的指标来评价这些反应器, 采用旋转螺旋状铜电极反应器时最好, 当反应物流量为60 mL/min时, 甲烷最高转化率为77.31%, 对应的C2烃收率和选择性分别为75.66%和97.88%; 当能量密度为800 kJ/mol时, 能效最高为13.5%.  相似文献   

6.
The plasma technology served as a tool in unconventional catalysis has been used in natural gas conversion,because the traditional catalytic methane oxidative coupling reaction must be performed at high temperature on account of the stability of methane molecule.The focus of this research is to develop a process of converting methane to C2 hydrocarbons with non-equilibrium plasma technology at room temperature and atmospheric pressure.It was found that methane conversion increased and the selectivity of C2 hydrocarbons decreased with the voltage.The optimum input voltage range was 40-80 V corresponding to high yield of C2 hydrocarbons.Methane conversion decreased and the selectivity of C2 hydrocarbons increased with the inlet flow rate of methane.The proper methane flow rate was 20-40 ml/min (corresponding residence time 10-20 s).The experimental results show that methane conversion was 47% and the selectivity of C2 hydrocarbons was 40% under the proper condition using atmospheric DBD cold plasma technology.It was found that the breakdown voltage of methane VB was determined by the type of electrode and the discharge gap width in this glow discharge reactor.The breakdown voltage of methane VB,min derived from the Paschen law equation was established.  相似文献   

7.
反应器型式对甲烷低温等离子体转化制C2烃的影响   总被引:2,自引:0,他引:2  
就不同反应器对甲烷常压低温等离子体转化制C2烃的影响进行了研究。结果表明,相同的甲烷停留时间和相同甲烷流率下,反应器A和B中反应的主要产物是乙炔,乙烯和乙烷的含量较少,积炭量较多;而反应器C和D中反应的主要产物为乙烷和丙烷,乙烯和乙炔含量较少,积炭量很少。反应积炭对反应器A中甲烷转化率影响很大,对于产物选择性影响不大,而对反应器C中的反应影响较小。根据产物分布可知,在反应器A和B中,由于电子具有很高的能量和密度,甲烷主要解离为碳原子;而在反应器C及D中,由于电子能量和密度较低,甲烷主要解离为CH3自由基。  相似文献   

8.
二氧化碳和天然气经过微波等离子体直接转化成C2烃   总被引:5,自引:0,他引:5  
陈栋梁  张承聪 《合成化学》1997,5(2):131-132
二氧化碳和天然气经过微波等离子体直接转化成C2烃陈栋梁雷正兰刘万楹*⒇张承聪洪品杰戴树珊(中国科学院成都有机化学研究所,成都,610041)(云南大学化学系,昆明,650091)二氧化碳和甲烷都是很稳定的非极性分子,要使其分子活化,发生化学反应,转化...  相似文献   

9.
利用脉冲微波强化、扩展丝光等离子体反应装置,在常压和正压条件下,对低温脉冲微波等离子体裂解甲烷和氢气混合气制C2烃的反应进行了研究。考察了压力、微波功率、脉冲通/断时间以及氢气/甲烷比例、流量等参数对反应的影响。结果表明,在脉冲微波的作用下,常规高压放电形成的在空间呈非连续分布的丝状等离子体被强化和扩展成为连续分布的伞状等离子体,等离子体利用率和活性均得以大幅度提高;利用这种低温等离子体可以获得高的甲烷转化率,而且产物纯净,只有乙烯和乙炔;通过改变压力,还可能调节产物中C2H2/C2H4的物质的量比值,当气体总流量为300mL/min、物质的量比n(H2)/n(CH4)=2:1、压力为0.13MPa、微波峰值功率为120W、脉冲通/断比=400/400ms时,甲烷转化率可达59.2%,C2烃单程收率可达52%,其中乙炔单程收率达42.7%。  相似文献   

10.
The infrared emission spectra of methane, H, CH and C2 hydrocarbons in natural gas were measured. The processes of methane decomposition and formation of C2 hydrocarbons were studied. The experiment shows that methane decomposition can be divided into three periods as the reaction proceeds.In the first period, a large number of free radicals were formed. While in the last period, the formation of C2 hydrocarbons and the decrease of free radicals were observed. The time and conditions of methane decomposition and formation of C2 hydrocarbons are different.  相似文献   

11.
A method is described for the determination of C10-C20 hydrocarbons in natural gas. Enrichment by solid phase extraction on ODS followed by liquid desorption was found to give better results than adsorption on Tenax or charcoal followed by liquid or thermal desorption.  相似文献   

12.
In this paper the effect of catalyst and carrier in electric field enhanced plasma on methane conversion into C2 hydrocarbons was investigated. Methane coupling reaction was studied in the system of continuous flow reactor on Ni, MoO3, MnO2 catalysts and different ZSM-5 carriers. The per pass conversion of methane can be as high as 22%, the selectivity of ethylene can be as high as 23.8%, of acetylene 60.8%, of ethane 5.4% and of total C2 hydrocarbons was more than 90%. ZSM-5-25 was the better carrier and MnO2 was the better active component. The efficiency of energy was as high as 7.81%.  相似文献   

13.
采用刀片式不锈钢电极放电反应器,以Ar气为稀释气,研究了等离子体作用下甲烷转化制C2烃的工艺条件。考察了CH4流量、高频电源输入电压和电极间距等参数对甲烷转化率、C2烃选择性、收率和反应表观能耗的影响。结果表明,增加CH4流量,表观能耗随之降低;当输入电压和电极间距较小时,甲烷转化率随输入电压和电极间距的增大而增大,但输入电压和电极间距过大时,C2烃收率明显下降,积碳严重。在CH4流量14 mL/min、Ar气流量60 mL/min、高频电源输入电压22 V、电流0.44 A、电极间距4 mm的优化条件下,甲烷最高转化率为43.1%,C2烃收率、选择性和表观能耗分别为40.1%、93.2%和2.41 MJ/mol。C2烃中不饱和烃的体积分数可达95%以上。  相似文献   

14.
Plasma treatment of a polymeric surface could involve at least three major mechanisms: (1) direct interaction of reactive species in the low-temperature plasma state with the surface (line of sight irradiation effect), and (2) chemical reactions of plasma-induced reactive species with the surface, and (3) reactions among reactive species and the surface (plasma polymerization). The first and the third effects are considered to be limited to the surfaces which directly contact with plasma (glow). The second effect is not limited to the surfaces that contact with plasma state but can penetrate beyond the plasma zone by diffusion. Using an assembly of fibers, of which only the top layer contacts with plasma (glow), the penetration of chemical changes caused by plasma exposure was investigated. Results indicate that the fluorination effect (incorporation of fluorine-containing moieties on the surface of polymeric substrate) penetrates through a considerable thickness of the assembly of fibers, depending on the porosity (gas permeability) of the system. Chemical reactions of plasma-induced (chemically) reactive but nonpolymerizing species with the substrate fibers seems to predominate. The direct interactions of energetic species, such as ions, electrons, and electronically excited species, with polymeric surfaces seems to play relatively minor roles in the plasma treatment investigated. The major role of plasma, in this case, seems to be creating such chemically reactive species. © 1994 John Wiley & Sons, Inc.  相似文献   

15.
Effects of additive gases on dimethyl ether (DME) conversion through dielectric barrier discharge (DBD) were investigated. Most of the additive gases tested in this work increased the conversion of DME, but decreased the yield of liquid product. However, the addition of O2 markedly increased both the conversion of DME and the yield of liquid product. The results show that when O2 volume fraction was 39.95%, the conversion of DME was close to 100% and the yield of liquid product reached 34.43%. Different additive gases resulted in different mass fractions variation of components in liquid products.  相似文献   

16.
The conversion of CH4 with oxygen and steam in a dielectric barrier discharge (DBD) was studied in the paper to discuss the effects of different factors,such as the content of feed-in gas,the applied voltage and frequency.The results showed that a lower ratio of CH4 to O2 always resulted in a higher conversion of CH4.When it was 2,the conversion reached 32.43% without steam introduced into the system.The main effect of steam was increasing the selectivity to CO.The reaction was accelerated and the selectivities to CO and hydrocarbons were enhanced by increasing the applied voltage.It was also observed that a higher frequency led to a lower current and then restrained the reaction.  相似文献   

17.
Direct conversion of methane to higher hydrocarbons is an effective process to solve the problem of natural gas utilization. Although remarkable progress has been achieved on the dehydro-aromatization of methane (DAM), low conversion caused by severe thermodynamic limitations, coke formation, and catalysis deactivation remain important drawbacks to the direct conversion process. Molybdenum catalysts supported on HZSM-5 type zeolite support are among the most promising catalysts. This review focuses on the aspects of direct methane conversion, in terms of catalysts containing metal and support, reaction conditions, and conversion in different types of reactors. The reaction mechanism for this catalytic process is also discussed.  相似文献   

18.
Conversion of Methane to C2 Hydrocarbons via Cold Plasma Reaction   总被引:1,自引:0,他引:1  
Direct conversion of methane to C2 hydrocarbons via cold plasma reaction with catalysts has been studied at room temperature and atmospheric pressure. Methane can be converted into C2 hydrocarbons in different selectivity depending on the form of the reactor, power of plasma, flow rate of methane, ratio of N2/CH4 and nature of the catalysts. The selectivity to C2 hydrocarbons can reach as high as 98.64%, and the conversion of methane as high as 60% and the yield of C2 hydrocarbons as high as 50% are obtained. Coking can be minimized under the conditions of: proper selection of the catalysts, appropriate high flow rate of inlet methane and suitable ratio of N2 to CH4. The catalyst surface provides active sites for radical recombination.  相似文献   

19.
The equilibrium plasma composition for a system containing H, O, N, Na, and Cu is determined for the temperature range between 5000–20,000 K. This corresponds to the pulsed discharge plasma in electrolyte with energy dissipation which is near threshold. For computing the plasma composition of the system based on the minimization of free energy, the method of steepest descent was used. The plasma composition was calculated for different electrolyte contents, conductivity, and various external pressures.  相似文献   

20.
CO2 capture by hydrate formation is a novel gas separation technology, by which CO2 is selectively engaged in the cages of hydrate and is separated with other gases, based on the differences of phase equilibrium for CO2 and other gases. However, rigorous temperature and pressure, high energy cost and industrialized hydration separator dragged the development of the hydrate based CO2 capture. In this paper, the key problems in CO2 capture from the different sources such as shifted synthesis gas, flue gas and sour natural gas or biogas were analyzed. For shifted synthesis gas and flue gas, its high energy consumption is the barrier, and for the sour natural gas or biogas (CO2/CH4 system), the bottleneck is how to enhance the selectivity of CO2 hydration. For these gases, scale-up is the main difficulty. Also, this paper explored the possibility of separating different gases by selective hydrate formation and reviewed the progress of CO2 separation from shifted synthesis gas, flue gas and sour natural gas or biogas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号