首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
等离子体条件Cu/SiO2对甲烷偶联的催化作用   总被引:1,自引:0,他引:1  
代斌  宫为民  张秀玲  何仁 《催化学报》2002,23(4):297-298
It has been reported that methane coupling by plasma techniques with catalysts, such as direct current corona discharge with a Sr/La2O3 catalyst[1], dielectric-barrier discharge with zeolites[2] and pulsed corona discharge with metal oxide catalysts[3], give C2 hydrocarbons under atmospheric pressure. But acetylene predominates over other C2 hydrocarbons in the products. Our recent work reported that good results can be obtained for methane coupling under a pulsed corona plasma in the presence of hydrogen[4]. The addition of hydrogen improves the conversion of methane and the yield of C2 hydrocarbons. A methane conversion of 57.1% and a yield of C2 hydrocarbons of 43.4% were obtained at lower power, but acetylene was inevitably the main product. With the introduction of a Ni/γ-Al2O3 catalyst prepared by a cold plasma into the plasma reaction, the distribution of C2 hydrocarbons changed, and the content of C2H4 was 66.1%[5].  相似文献   

2.
At normal temperature and pressure, pulse corona plasma was used as a new method for the dehydrogenative coupling of methane in the absence of oxygen. The effects of voltage polarity and input energy on the dehydrogenative coupling of methane were investigated. The parameter "energy efficiency" was introduced to examine the coupling of the input energy and the dehydrogenative coupling of methane. The experimental results show that positive corona gives higher energy efficiency than negative corona. When the positive corona was chosen, C2. yield per pass was 31.6% and acetylene yield per pass was 30.1% with 44.6% methane conversion at an input energy density of 1788kJ/mol and a pulse repetition frequency of 66Hz. The function of input energy density towards methane conversion may be expressed as a formula of -ln(1-X) = k (P/F). In the range of input energy employed, C2 yield is proportional to input energy density, but energy efficiency drops off with increasing input energy density.  相似文献   

3.
Experiments are performed to develop a pulsed corona discharge system for the conversion ofmethane to hydrogen at atmospheric pressure (≌760 Torr) without using a catalyst. The corona dischargewas energized by 10-12 μs wide voltage pulses (≤7 kV) at a repetition rate of about 1.0-1.5 kHz. Theresidual gases were characterized by mass spectrometry. The conversion of methane is as high as 50.8% producing the 70% yield of hydrogen. The influences of argon on the discharge of methane were studied.This result could be useful for the mass production of hydrogen in both academic and industrial point ofview.  相似文献   

4.
Study on the hydrogenation coupling of methane   总被引:4,自引:0,他引:4  
At atmospheric pressure and ambient temperature, the hydrogenation coupling of methane was studied by using pulse corona plasma and its synergism with catalyst. The results showed that (i) under pulse corona plasma, the coupling of methane could be fulfilled by the addition of hydrogen, and with the increase of the amount of hydrogen, the conversion of methane and the yield of C2 hydrocarbon increased, and the deposit of carbon decreased; (ii) the conversion of methane was affected by pulse voltage and repeated frequency; (iii) in the system, the addition of Ni/y-AI203 could improve the distribution of C2 hydrocarbon; (iv) the activity of Ni/y-AI2O3 prepared by cold plasma was better than that by chemical methods. The experiment opened up a new technical route of the coupling of methane.  相似文献   

5.
In the current study,the hybrid effect of a corona discharge and γ-alumina supported Ni catalysts in CO2 reforming of methane is investigated.The study includes both purely catalytic operation in the temperature range of 923-1023K,and hybrid catalytic-plasma operation of DC corona discharge reactor at room temperature and ambient pressure.The effect of feed flow rate,discharge power and Ni/γ-Al2O3 catalysts are studied.When CH4/CO2 ratio in the feed is 1/2,the syngas of low H2/CO ratio at about 0.56 is obtained,which is a potential feedstock for synthesis of liquid hydrocarbons.Although Ni catalyst is only active above 573K,presence of Ni catalysts in the cold corona plasma reactor(T≤523K) shows promising increase in the conversions of methane and carbon dioxide.When Ni catalysts are used in the plasma reaction,H2/CO ratios in the products are slightly modified,selectivity to CO increases whereas fewer by-products such as hydrocarbons and oxygenates are formed.  相似文献   

6.
Kinetic Modeling of Plasma Methane Conversion Using Gliding Arc   总被引:3,自引:0,他引:3       下载免费PDF全文
Plasma methane (CH4) conversion in gliding arc discharge was examined. The result data of experiments regarding the performance of gliding arc discharge were presented in this paper. A simulation which is consisted some chemical kinetic mechanisms has been provided to analyze and describe the plasma process. The effect of total gas flow rate and input frequency refers to power consumption have been studied to evaluate the performance of gliding arc plasma system and the reaction mechanism of decomposition.Experiment results indicated that the maximum conversion of CH4 reached 50% at the total gas flow rate of 1 L/min. The plasma reaction was occurred at the atmospheric pressure and the main products were C (solid), hydrogen, and acetylene (C2H2). The plasma reaction of methane conversion was exothermic reaction which increased the product stream temperature around 30~50℃.  相似文献   

7.
Methane Coupling Using Hydrogen Plasma and Pt/γ—Al2O3 Catalyst   总被引:2,自引:0,他引:2  
In this paper,methane coupling at ambient temperature, under atmospheric pressure and in the presence of hydrogen was firstly investigated by using pulse corona plasma and Pt/γ-Al2O3 catalyst. Experimental results showed that Pt/γ-Al2O3 catalyst has catalytic activity for methane couplin to C2H4. Over sixty percent o outcomes of C2 hydrocarbons were detected to be ethylene.  相似文献   

8.
Conversion of Methane to C2 Hydrocarbons via Cold Plasma Reaction   总被引:1,自引:0,他引:1  
Direct conversion of methane to C2 hydrocarbons via cold plasma reaction with catalysts has been studied at room temperature and atmospheric pressure. Methane can be converted into C2 hydrocarbons in different selectivity depending on the form of the reactor, power of plasma, flow rate of methane, ratio of N2/CH4 and nature of the catalysts. The selectivity to C2 hydrocarbons can reach as high as 98.64%, and the conversion of methane as high as 60% and the yield of C2 hydrocarbons as high as 50% are obtained. Coking can be minimized under the conditions of: proper selection of the catalysts, appropriate high flow rate of inlet methane and suitable ratio of N2 to CH4. The catalyst surface provides active sites for radical recombination.  相似文献   

9.
We reported a coaxial,micro-dielectric barrier discharge(micro-DBD)reactor and a conventional DBD reactor for the direct conversion of methane into higher hydrocarbons at atmospheric pressure.The effects of input power,residence time,discharge gap and external electrode length were investigated for methane conversion and product selectivity.We found the conversion of methane in a micro-DBD reactor was higher than that in a conventional DBD reactor.And at an input power of 25.0 W,the conversion of methane and the total C2+C3 selectivity reached 25.10% and 80.27%,respectively,with a micro-DBD reactor of 0.4 mm discharge gap.Finally,a nonlinear multiple regression model was used to study the correlations between both methane conversion and product selectivity and various system variables.The calculated data were obtained using SPSS 12.0 software.The regression analysis illustrated the correlations between system variables and both methane conversion and product selectivity.  相似文献   

10.
The experiments are carried out in the system of continuous flow reactors with dielectric-barrier discharge (DBD) for studies on the conversion of natural gas to C2 hydrocarbons through plasma catalysis under the atmosphere pressure and room temperature. The influence of discharge frequency, structure of electrode, discharge voltage, number of electrode, ratio of H2/CH4, flow rate and catalyst on conversion of methane and selectivity of C2 hydrocarbons are investigated. At the same time, the reaction process is investigated. Higher conversion of methane and selectivity of C2 hydrocarbons are achieved and deposited carbons are eliminated by proper choice of parameters. The appropriate operation parameters in dielectric-barrier discharge plasma field are that the supply voltage is 20-40 kV (8.4-40 W), the frequency of power supply is 20 kHz, the structure of (b) electrode is suitable, and the flow of methane is 20-60 ml · min-1. The conversion of methane can reach 45%, the selectivity of C2 hydrocarbons i  相似文献   

11.
The authors recently developed a high-frequency pulsed plasma process for methane conversion to acetylene and hydrogen using a co-axial cylindrical (CAC) type of reactor. The energy efficiency represented by methane conversion rate per unit input energy has been improved so that such a pulsed plasma has potential for commercial acetylene production. A pulsed plasma consists of a pulsed corona discharge and a pulsed spark discharge. Most of energy is injected over the duration of the pulsed spark discharge. Methane conversion using this kind of pulsed plasma is a kind of pyrolysis enhanced by the pulsed spark discharge. In this study, a point-to-point (PTP) type of reactor that can produce a discharge channel over the duration of a pulse discharge was used for the pulsed plasma conversion of methane. The energy efficiency and carbon formation on electrodes have been improved. The influences of pulse frequency and pulse voltage on methane conversion rate and product selectivity were investigated. The features of methane conversion using PTP and CAC reactors were discussed.  相似文献   

12.
研究了在常温,常压及惰性气体稀释的条件下,用脉冲电晕放电进行的甲烷氧化偶联(OCM)反应。在各种实验条件下,产物CZ烃由一6o/o乙烯,-70rk乙烷和一87%乙炔组成。甲烷的转化率及CZ烃的生成速率依赖于反应气中甲烷与氧气的比值,它们的流速及直流电源的电压等n通过调节这些实验条件,甲烷转化为C4烃的转化率可得到优化,在45kV高压,30ml。/min的流速下(反应气体组成为95%CHn与50/0O2),CZ烃的最高选择性可达85O/O。当反应气体组成为80%CH4和20O/oOZ时,甲烷的最高转化率达23%。在间歇式反应器中,甲烷转化率随反应时间增长而提高,反应75分钟时甲烷转化率达7lO/O,而CZ烃的产物分布,尤其是乙炔的含量随反应时间增长而明显降低,这些实验结果支持了文献中提出的ZCH4~CZH6—CZH4~CZHZ~CO/COZ反应历程。  相似文献   

13.
The direct non-oxidative conversion of methane to higher hydrocarbons in non-thermal plasma, namely dielectric barrier discharge and corona discharge, has been investigated experimentally at atmospheric pressure. In dielectric barrier discharge, the methane is mainly converted to ethane and propane with small amounts of unsaturated and higher hydrocarbons. While in corona discharge, methane was activated mainly to acetylene with small amount of other higher hydrocarbons. Decreasing the gas flow or increasing power input will improve the methane conversion and product yields. It is found that the methane conversion and main product yield against the input specific energy were special functions in both dielectric barrier discharge and corona discharge, independent of the reactor size, and whether fixing flow rate or power input and changing the power input or flow rate. The corona discharge is a promising alternative method for methane conversion to produce acetylene and hydrogen at low temperature.  相似文献   

14.
There is abundant supply of light alkanes and relatively few routes of converting them to more valuable products. Although CH4 predominates in natural gas, it also contains C2H6, C3H8 and C4H10 (from 5 % to 30% ), and with C2H6 as the most abundant secondary component[1]. Partial oxidation of methane to syngas (CH4 +0.5O2 →CO + 2H2) over nickel-based catalysts has received intensive attention[2]and much research has been devoted to conversion of ethane to ethylene[3]. Ethylene has been shown to be formed from ethane by thermal dehydrogenation (C2H6 →C2H4 + H2) and oxidative dehydrogenation (C2H6 + 0. 5O2 →C2H4 + H2O). These processes are operated under severely fuel-rich conditions. The carbon-deposition and consequent deactivation of the catalysts are major problems, which leads to poor conversion of the above mentioned reactions. As an alternative strategy for the elaboration of ethane, little work on the partial oxidation of ethane (POE) to syngas over nickel-based catalysts has been reported. Provided it could be produced from C2H6with high selectivity and high conversion over nickel-based catalysts, syngas could be directly obtained from natural gas including CH4 and C2H6 with high selectivity and conversion. This may lead to better utilization of the light fractions from natural gas and refineries. In the present paper, POE to syngas over nickel-based catalysts was investigated.  相似文献   

15.
利用脉冲微波强化、扩展丝光等离子体反应装置,在常压和正压条件下,对低温脉冲微波等离子体裂解甲烷和氢气混合气制C2烃的反应进行了研究。考察了压力、微波功率、脉冲通/断时间以及氢气/甲烷比例、流量等参数对反应的影响。结果表明,在脉冲微波的作用下,常规高压放电形成的在空间呈非连续分布的丝状等离子体被强化和扩展成为连续分布的伞状等离子体,等离子体利用率和活性均得以大幅度提高;利用这种低温等离子体可以获得高的甲烷转化率,而且产物纯净,只有乙烯和乙炔;通过改变压力,还可能调节产物中C2H2/C2H4的物质的量比值,当气体总流量为300mL/min、物质的量比n(H2)/n(CH4)=2:1、压力为0.13MPa、微波峰值功率为120W、脉冲通/断比=400/400ms时,甲烷转化率可达59.2%,C2烃单程收率可达52%,其中乙炔单程收率达42.7%。  相似文献   

16.
有氧气氛下等离子体甲烷偶联反应的研究   总被引:2,自引:0,他引:2  
近年来,非平衡等离子体应用于甲烷直接转化的研究备受关注,但多数研究工作采用的是低气压下微波或高频放电产生的非平衡等离子体[1-9].在常压下获得非平衡等离子体一般是通过脉冲电晕放电或介质阻挡放电产生的[10,11].Liu等[12]采用电晕放电(非脉冲)研究了CH4+O2+He(pCH4=2.03×104Pa,pO2=5.07×103Pa,He平衡)体系的甲烷偶联反应.  如前文[13]所述,脉冲电晕等离子体是一种新型常压非平衡等离子体,其电子通过上升沿陡峭的窄脉冲电场加速而获得能量(1~20eV).将其应用于甲烷偶联反应,不仅具有反应条件温和(常温常压)…  相似文献   

17.
At normal temperature and pressure, pulse corona plasma was used as a new method for the dehydrogenative coupling of methane in the absence of oxygen. The effects of voltage polarity and input energy on the dehydrogenative coupling of methane were investigated. The parameter “energy efficiency” was introduced to examine the coupling of the input energy and the dehydrogenative coupling of methane. The experimental results show that positive corona gives higher energy efficiency than negative corona. When the positive corona was chosen, C2 yield per pass was 31.6% and acetylene yield per pass was 30.1% with 44.6% methane conversion at an input energy density of 1788kJ/mol and a pulse repetition frequency of 66Hz. The function of input energy density towards methane conversion may be expressed as a formula of-In(1-X) =k (PIF). In the range of input energy employed, C2 yield is proportional to input energy density, but energy efficiency drops off with increasing input energy density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号