首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
光动力治疗因具有低毒、副作用小、抗癌广谱、高选择性等优势, 正吸引着人们越来越多的关注。提高光敏剂的选择性和光毒性已经成为研究的热点。本文简单介绍了光敏剂的发展历程, 并对酞菁类第三代光动力治疗光敏剂的最新研究进展进行了论述。  相似文献   

2.
光动力治疗因具有低毒、副作用小、抗癌广谱、高选择性等优势,正吸引着人们越来越多的关注。提高光敏剂的选择性和光毒性已经成为研究的热点。本文简单介绍了光敏剂的发展历程,并对酞菁类第三代光动力治疗光敏剂的最新研究进展进行了论述。  相似文献   

3.
In recent years, porphyrins with a similar structure to chlorophyll are often used as photosensitizers or reaction centers to improve the light absorption capacity or catalytic selectivity of existing photocatalytic systems. However, photocatalytic reactions include photoelectric conversion, photocarrier transport, and surface reaction, which requires the overall design of porphyrin-based photocatalysts. In this paper, the research work of porphyrin molecular design in heterogeneous photocatalys...  相似文献   

4.
Photodynamic therapy (PDT) is a promising alternative treatment for different types of cancer due to its high selectivity, which prevents healthy tissues from being damaged. The use of nanomaterials in PDT has several advantages over classical photosensitizing agents, due to their unique properties and their capacity for functionalization. Especially interesting is the use of metallic nanoparticles, which are capable of absorbing electromagnetic radiation and either transferring this energy to oxygen molecules for the generation of reactive oxygen species (ROS) or dissipating it as heat. Although previous reports have demonstrated the capacity of Rh derivatives to serve as anti-tumor drugs, to the best of our knowledge there have been no studies on the potential use of small-sized Rh nanoparticles as photosensitizers in PDT. In this study, 5 nm Rh nanoparticles have been synthesized and their potential in PDT has been evaluated. The results show that treatment with Rh nanoparticles followed by NIR irradiation induces apoptosis in cancer cells through a p53-independent mechanism.  相似文献   

5.
Photodynamic therapy (PDT) is a two-step procedure, involving the topical or systemic administration of a photosensitizer followed by selective illumination of the target lesion with visible light, which triggers the oxidative photodamage and subsequent cell death within the target area. In dermatology, PDT has proven to be a useful treatment for a variety of malignant tumors and selected inflammatory diseases. In addition, PDT of several infective viral or bacterial skin diseases has been investigated. These investigations grew out of the positive findings of studies of another important use of PDT: that of disinfection of blood products. Up to now, little has been published concerning the application of PDT to fungi, probably due to the fact that research funding has been mainly directed towards blood disinfection, and these pathogens show a low risk of transfusion transmission. However, preliminary findings have demonstrated that dermatophytes and yeasts can be effectively sensitized in vitro by administering photosensitizers belonging to four chemical groups: phenothiazine dyes, porphyrins and phthalocyanines, as well as aminolevulinic acid, which, while not a photosensitizer in itself, is effectively metabolized into protoporphyrin IX. Besides efficacy, PDT has shown other benefits. First, the sensitizers used are highly selective, i.e., fungi were killed at combinations of drug and light doses much lower than that needed for a similar effect on keratinocytes. Second, all investigated photosensitizers lack genotoxic and mutagenic activity. Finally, the hazard of selection of drug resistant fungal strains was never reported. This paper intends to provide a comprehensive overview of investigative studies about the effects of PDT on yeasts and dermatophytes, and bring attention to this application of PDT which we believe very important in that skin mycosis is so common and PDT is not only cost-effective, but also has the advantages of being highly selective and avoiding the occurrence of drug resistant strains.  相似文献   

6.
Bladder cancer is the first cancer for which PDT was clinically approved in 1993. Unfortunately, it was unsuccessful due to side effects like bladder contraction. Here, we summarized the recent progress of PDT for bladder cancers, focusing on photosensitizers and formulations. General strategies to minimize side effects are intravesical administration of photosensitizers, use of targeting strategies for photosensitizers and better control of light. Non-muscle invasive bladder cancers are more suitable for PDT than muscle invasive and metastatic bladder cancers. In 2010, the FDA approved blue light cystoscopy, using PpIX fluorescence, for photodynamic diagnosis of non-muscle invasive bladder cancer. PpIX produced from HAL was also used in PDT but was not successful due to low therapeutic efficacy. To enhance the efficacy of PpIX-PDT, we have been working on combining it with singlet oxygen-activatable prodrugs. The use of these prodrugs increases the therapeutic efficacy of the PpIX-PDT. It also improves tumor selectivity of the prodrugs due to the preferential formation of PpIX in cancer cells resulting in decreased off-target toxicity. Future challenges include improving prodrugs and light delivery across the bladder barrier to deeper tumor tissue and generating an effective therapeutic response in an In vivo setting without causing collateral damage to bladder function.  相似文献   

7.
Photochemotherapeutic agents are photosensitizers that are selectively retained by neoplastic tissue. When tumor tissue containing these drugs is irradiated with visible electromagnetic radiation, the photosensitizing reaction may lead to tumor eradication, termed photodynamic therapy. Exogenous photosensitizers commonly used in clinical trials are mainly porphyrin derivatives. Phthalocyanines are currently being investigated as "second generation" photochemotherapeutic agents. The mechanism by which these photosensitizers are selectively retained in neoplastic tissue is unclear. This review examines the role of tissue and cellular pH as a factor in selective biodistribution. The pH values of normal and tumor tissue are summarized and the ionic species distribution diagram of porphyrins is presented. A two-fold mechanism of selective biodistribution is advanced, one involving normal tissue vs. tumor tissue selectivity, the other involving intracellular vs. intercellular distribution of sensitizer ionic species.  相似文献   

8.
本文对目前用于光动力治疗的以卟啉为基础的第二代光敏剂进行了综述, 这些光敏剂中的大部分已进入临床或临床前试验, 光物理性质研究表明它们是很有前途的光动力药物. 本文同样介绍了连接生物分子和硼烷的卟啉衍生物, 作为光疗剂, 它们具有非常光明的前途.  相似文献   

9.
The growing resistance against antifungal drugs has renewed the search for alternative treatment modalities, and antimicrobial photodynamic therapy (PDT) seems to be a potential candidate. Preliminary findings have demonstrated that dermatophytes and yeasts can be effectively sensitized in vitro and in vivo by administering photosensitizers (PSs) belonging to four chemical groups: phenothiazine dyes, porphyrins and phthalocyanines, as well as aminolevulinic acid, which, while not a PS in itself, is effectively metabolized into protoporphyrin IX. Besides efficacy, PDT has shown other benefits. First, the sensitizers used are highly selective, i.e., fungi can be killed at combinations of drug and light doses much lower than that needed for a similar effect on keratinocytes. Second, all investigated PSs lack genotoxic and mutagenic activity. Finally, the hazard of selection of drug resistant fungal strains has been rarely reported. We review the studies published to date on antifungal applications of PDT, with special focus on yeast, and aim to raise awareness of this area of research, which has the potential to make a significant impact in future treatment of fungal infections.  相似文献   

10.
Photodynamic therapy (PDT) stands to benefit from improved approaches to real-time treatment monitoring. One method is to use activatable photosensitizers that can both induce cell death (via singlet oxygen) and monitor it (via caspase detection). Here, we report porphyrins as caspase-responsive Forster Resonance Energy Transfer (FRET) acceptors to organic fluorophore donors. Compared to porphyrin FRET donor constructs, singlet oxygen generation was unquenched prior to caspase activation, resulting in more efficient photosensitization in HT-29 cancer cells. The donor 5-Carboxy-X-Rhodamine (Rox) formed a robust FRET pair with the pyropheophorbide (Pyro) acceptor. The large dynamic range of the construct enabled ratiometric imaging (with Rox excitation) of caspase activation in live, single cells following induction of cell death (with Pyro excitation) using a single agent. Quantitative, unquenched activatable photosensitizers (QUaPS) hold potential for new feedback-oriented PDT approaches.  相似文献   

11.
In vitro demonstration of the heavy-atom effect for photodynamic therapy   总被引:1,自引:0,他引:1  
Photodynamic therapy (PDT) is an emerging treatment modality for a range of disease classes, both cancerous and noncancerous. This has brought about an active pursuit of new PDT agents that can be optimized for the unique set of photophysical characteristics that are required for a successful clinical agent. We now describe a totally new class of PDT agent, the BF2-chelated 3,5-diaryl-1H-pyrrol-2-yl-3,5-diarylpyrrol-2-ylideneamines (tetraarylazadipyrromethenes). Optimized synthetic procedures have been developed to facilitate the generation of an array of specifically substituted derivatives to demonstrate how control of key therapeutic parameters such as wavelength of maximum absorbance and singlet-oxygen generation can be achieved. Photosensitizer absorption maxima can be varied within the body's therapeutic window between 650 and 700 nm, with high extinction coefficients ranging from 75,000 to 85,000 M(-1) cm(-1). Photosensitizer singlet-oxygen generation level was modulated by the exploitation of the heavy-atom effect. An array of photosensitizers with and without bromine atom substituents gave rise to a series of compounds with varying singlet-oxygen generation profiles. X-ray structural evidence indicates that the substitution of the bromine atoms has not caused a planarity distortion of the photosensitizer. Comparative singlet-oxygen production levels of each photosensitizer versus two standards demonstrated a modulating effect on singlet-oxygen generation depending upon substituent patterns about the photosensitizer. Confocal laser scanning microscopy imaging of 18a in HeLa cervical carcinoma cells proved that the photosensitizer was exclusively localized to the cellular cytoplasm. In vitro light-induced toxicity assays in HeLa cervical carcinoma and MRC5-SV40 transformed fibroblast cancer cell lines confirmed that the heavy-atom effect is viable in a live cellular system and that it can be exploited to modulate assay efficacy. Direct comparison of the efficacy of the photosensitizers 18b and 19b, which only differ in molecular structure by the presence of two bromine atoms, illustrated an increase in efficacy of more than a 1000-fold in both cell lines. All photosensitizers have very low to nondeterminable dark toxicity in our assay system.  相似文献   

12.
Dithiaporphyrin derivatives as photosensitizers in membranes and cells   总被引:1,自引:0,他引:1  
We synthesized a series of analogues of 5,20-diphenyl-10,15-bis(4-carboxylatomethoxy)phenyl-21,23-dithiaporphyrin (I) as potential photosensitizers for photodynamic therapy (PDT). The photosensitizers differ in the length of the side chains that bind the carboxyl to the phenol at positions 10 and 15 of the thiaporphyrin. The spectroscopic, photophysical, and biophysical properties of these photosensitizers are reported. The structural changes have almost no effect on the excitation/emission spectra with respect to I's spectra or on singlet oxygen generation in MeOH. All of the photosensitizers have a very high, close to 1.00, singlet oxygen quantum yield in MeOH. On the contrary, singlet oxygen generation in liposomes was considerably affected by the structural change in the photosensitizers. The photosensitizers possessing short side chains (one and three carbons) showed high quantum yields of around 0.7, whereas the photosensitizers possessing longer side chains showed smaller quantum yield, down to 0.14 for compound X (possessing side-chain length of 10 carbons), all at 1 microM. Moreover a self-quenching process of singlet oxygen was observed, and the quantum yield decreased as the photosensitizer's concentration increased. We measured the binding constant of I to liposomes and found Kb = 23.3 +/- 1.6 (mg/mL)-1. All the other photosensitizers with longer side chains exhibited very slow binding to liposomes, which prevented us from assessing their Kb's. We carried out fluorescence resonance energy transfer (FRET) measurements to determine the relative depth in which each photosensitizer is intercalated in the liposome bilayer. We found that the longer the side chain the deeper the photosensitizer core is embedded in the bilayer. This finding suggests that the photosensitizers are bound to the bilayer with their acid ends close to the aqueous medium interface and their core inside the bilayer. We performed PDT with the dithiaporphyrins on U937 cells and R3230AC cells. We found that the dark toxicity of the photosensitizers with the longer side chain (X, VI, V) is significantly higher than the dark toxicity of sensitizers with shorter side chains (I, III, IV). Phototoxicity measurements showed the opposite direction; the photosensitizers with shorter side chains were found to be more phototoxic than those with longer side chains. These differences are attributed to the relationship between diffusion and endocytosis in each photosensitizer, which determines the location of the photosensitizer in the cell and hence its phototoxicity.  相似文献   

13.
Porphyrins play a major role as active photosensitizers in noninvasive optical photodynamic therapy (PDT). In a modular approach, this paper presents a short review of the recent developments of porphyrin structures and materials with improved photosensitizing properties and then presents the synthesis and characterization of a series of new second generation asymmetrical meso-tetraphenylporphyrins varied by substituent in the meta positions of the phenyl rings with either -OH or -OCH3 groups, whereas in the para positions only with -OCH3 groups. The new series of differentially functionalized porphyrins were obtained by a combinatorial multicomponent synthesis (Adler-Longo method) by simultaneously using two different aldehydes: 3,4-dimethoxybenzaldehyde and 3-hydroxybenzaldehyde. The porphyrins were isolated, purified and characterized by HPLC, TLC, UV-vis, fluorescence, MS, 1H-NMR, and 13C-NMR analysis, accompanied by DEPT 135 experiments. Because of the fact that the medium in cancerous tissues is often more acidic than in normal tissues, the capacity of these porphyrins to exist simultaneously in aggregated and protonated forms was also investigated, in tetrahydrofuran (THF) and acid THF-water systems, underlying the changes in the photophysical behaviour. The relative fluorescence quantum yields (Phif) were calculated in comparison with meso-tetraphenylporphyrin (TPP), and the values between 0.14-0.26 were found to be promising for further trials. The series of asymmetrically substituted tetraphenylporphyrins, as the new class of supramolecular materials, are suitable for further functionalization in order to improve their photophysical properties, and they could represent interesting potential PDT photosensitizers.  相似文献   

14.
光动力治疗是一种非侵蚀性并具有一定靶向性的肿瘤治疗新方法。 光动力治疗需要光敏剂、光和氧结合产生光动力反应。 光敏剂是光动力治疗的关键和物质基础。 本文概括介绍了已上市的和已被批准进入临床试验中的光敏剂,并根据其分子的骨架结构,将其分为分卟啉类、二氢卟吩(叶绿素)类和菌绿素/酞菁三类。 同时从理想光敏剂应具备特点出发,探讨了研究中的光敏剂和光动力治疗的发展前景。  相似文献   

15.
Two‐photon photodynamic therapy (2P‐PDT) is a promising noninvasive treatment of cancers and other diseases with three‐dimensional selectivity and deep penetration. However, clinical applications of 2P‐PDT are limited by small two‐photon absorption (TPA) cross sections of traditional photosensitizers. The development of folate receptor targeted nano‐photosensitizers based on conjugated polymers is described. In these nano‐photosensitizers, poly{9,9‐bis[6′′‐(bromohexyl)fluorene‐2,7‐ylenevinylene]‐coalt‐1,4‐(2,5‐dicyanophenylene)}, which is a conjugated polymer with a large TPA cross section, acts as a two‐photon light‐harvesting material to significantly enhance the two‐photon properties of the doped photosensitizer tetraphenylporphyrin (TPP) through energy transfer. These nanoparticles displayed up to 1020‐fold enhancement in two‐photon excitation emission and about 870‐fold enhancement in the two‐photon‐induced singlet oxygen generation capability of TPP. Surface‐functionalized folic acid groups make these nanoparticles highly selective in targeting and killing KB cancer cells over NIH/3T3 normal cells. The 2P‐PDT activity of these nanoparticles was significantly improved, potentially up to about 1000 times, as implied by the enhancement factors of two‐photon excitation emission and singlet oxygen generation. These nanoparticles could act as novel two‐photon nano‐photosensitizers with combined advantages of low dark cytotoxicity, targeted 2P‐PDT with high selectivity, and simultaneous two‐photon fluorescence imaging capability; these are all required for ideal two‐photon photosensitizers.  相似文献   

16.
Lipoproteins are now recognized as major blood carriers of many hydrophobic porphyrins and related chromophores which are being investigated as possible photosensitizers in the photodynamic therapy of tumours. In vitro and in vivo studies have demonstrated the role of the low density lipoprotein (LDL) receptor pathway in the delivery of photosensitizers to tumour cells and its importance in porphyrin accumulation by tumours. Lysosomes, which are involved in the cellular processing of LDL, are important intracellular targets in the LDL-porphyrin-induced phototoxicity. The use of the LDL receptor pathway as a tool for enhancing the selectivity of photosensitizer delivery to tumour cells appears to be a promising field of research in the photodynamic therapy of tumours.  相似文献   

17.
为了开发新的高效光动力治疗光敏剂, 以2-(2-羟基萘基)-5,10,15,20-四苯基卟啉及其Cu(Ⅱ), Ni(Ⅱ), Zn(Ⅱ)配合物为原料, 利用1,6-二溴己烷桥连具有抗癌活性的小分子姜黄素, 设计合成4个新型的天然产物桥连卟啉化合物. 通过UV, 1H NMR, IR, MS及元素分析等手段对该新型光敏药剂进行了结构表征; 在此基础上, 采用凝胶电泳法考察了化合物在光照和无光照条件下对pBR322质粒DNA的切割能力. 作为潜在光敏剂与DNA相互作用的初步研究表明, 其与DNA结合能力较强, 具有明显的光敏切割效果.  相似文献   

18.
The relation between the lifetimes of the triplet states of various porphyrins and their photosensitizing effects on the photodynamic therapy (PDT) of tumor has been examined. Diethylene-triamine pentaacetic acid ester of 4-[1-(2-hydroxy-ethyloxy)ethyl]-2-vinyl deuteroporphyrin-IX gallium (III) complex (Ga-DP), zinc (II) complex (Zn-DP), and manganese (III) complex (Mn-DP) and Photofrin II (PII) are used as the photosensitizer. The triplet lifetimes have been measured for the samples adsorbed on filter paper (FP) and found to be 57 ms (Ga-DP), 26 ms (Zn-DP), less than or equal to 10 microseconds (Mn-DP) and 9 ms (PII). The phosphorescence of Ga-DP in tumor-bearing golden hamsters are measured both in tumor tissue and in liver. They show bi-exponential decay with the lifetimes of about 5 and 20 ms. From the values, the generation rate, kct[3O2], of singlet molecular oxygen in living animal tissue may be estimated to be an order of 10(2) s-1. The PDT effects have been quantitatively investigated for in vitro experiments; upon irradiation the growth inhibitions of mouse p388 leukemia cells are obtained as a function of concentration of Ga-DP, Zn-DP, Mn-DP and PII. The experimental results indicate that the PDT effects depend essentially on the triplet lifetimes of the photosensitizers.  相似文献   

19.
Extensive triplet state spectroscopic investigations were carried out with a series of 5,10,15,20-tetrakis(methoxyphenyl)porphyrins. Triplet absorption spectra, triplet lifetime, triplet quantum yield and quantum yield for singlet oxygen production were determined with different absorption and emission techniques, using the frequency-doubled beam of a Nd:YAG laser. It has been found that these synthetic porphyrins are effective photosensitizers which can be used as model compounds to investigate the theoretical and instrumental aspects of PDT.  相似文献   

20.
《中国化学快报》2022,33(8):4101-4106
Fluorescence (FL) imaging guided photodynamic therapy (PDT) is becoming highly desirable for personalized therapy and precision medicine. In this study, fluorescent polymer nanoparticles TCPP@PEI/PGA were facilely synthesized through electrostatic interaction-mediated self-assembly of porphyrins tetra(4-carboxyphenyl)porphine (TCPP) and polyethylenimine (PEI), and subsequent surface modification with γ-poly(glutamic acid) (γ-PGA). TCPP served a dual function as the FL imaging probe and the photosensitizer. The as-prepared TCPP@PEI/PGA nanoparticles showed excellent water-solubility and biocompatibility, while having outstanding capabilities of in vivo bioimaging and 1O2 generation. FL bioimaging of mice and effective killing of CT 26 cells as well as CT 26 tumor-bearing mice upon laser irradiation were successfully demonstrated when using TCPP@PEI/PGA as theranostic nanoprobes. This study provides a simple but robust method to design and synthesize porphyrin-based polymer nanoparticles for theranostics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号