首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An efficient route to the HCV antiviral agent uprifosbuvir was developed in 5 steps from readily available uridine in 50% overall yield. This concise synthesis was achieved by development of several synthetic methods: (1) complexation-driven selective acyl migration/oxidation; (2) BSA-mediated cyclization to anhydrouridine; (3) hydrochlorination using FeCl3/TMDSO; (4) dynamic stereoselective phosphoramidation using a chiral nucleophilic catalyst. The new route improves the yield of uprifosbuvir 50-fold over the previous manufacturing process and expands the tool set available for synthesis of antiviral nucleotides.

An efficient route to the HCV antiviral agent uprifosbuvir was developed in 5 steps from readily available uridine in 50% overall yield.  相似文献   

2.
Heterocycle-derived aldehydes are challenging substrates in metal-catalysed hydroacylation chemistry. We show that by using azine N-oxide substituted aldehydes, good reactivity can be achieved, and that they are highly effective substrates for the intermolecular hydroacylation of alkynes. Employing a Rh(i)-catalyst, we achieve a mild and scalable aldehyde C–H activation, that permits the coupling with unactivated terminal alkynes, in good yields and with high regioselectivities (up to >20 : 1 l:b). Both substrates can tolerate a broad variety of functional groups. The reaction can also be applied to diazine aldehydes that contain a free N-lone pair. We demonstrate conversion of the hydroacylation products to the corresponding azine, through a one-pot hydroacylation/deoxygenation sequence. A one-pot hydroacylation/cyclisation, using N-Boc propargylamine, additionally leads to the synthesis of a bidentate pyrrolyl ligand.

Heterocycle-derived aldehydes are challenging substrates in metal-catalysed hydroacylation chemistry; using the N-oxide derivatives allows efficient reactions to be achieved.  相似文献   

3.
β-Lactam compounds play a key role in medicinal chemistry, specifically as the most important class of antibiotics. Here, we report a novel one-step approach for the synthesis of α-(trifluoromethyl)-β-lactams and related products from fluorinated olefins, anilines and CO. Utilization of an advanced palladium catalyst system with the Ruphos ligand allows for selective cycloaminocarbonylations to give diverse fluorinated β-lactams in high yields.

β-Lactam compounds play a key role in medicinal chemistry, specifically as the most important class of antibiotics.  相似文献   

4.
As a natural diterpenoid, crotophorbolone possesses a challenging trans,trans-5/7/6 framework decorated with six contiguous stereogenic centers and is structurally and biogenetically related to tigliane-type diterpenoids with intriguing bioactivities such as phorbol and prostratin. Based on the convergent strategy, we completed an eighteen-step total synthesis of crotophorbolone starting from (−)-carvone and (+)-dimethyl-2,3-O-isopropylidene-l-tartrate. The key elements of the synthesis involve expedient installation of the six-membered ring and the five-membered ring with multiple functional groups at an early stage, cyclization of the seven-membered ring through alkenylation of the ketone between the five-membered ring and the six-membered ring, functional group-sensitive ring-closing metathesis and final selective introduction of hydroxyls at C20 and C4.

Convergent total synthesis of crotophorbolone was accomplished in 18 longest linear steps. Observation of unexpected thermodynamic stability of a cis,trans-5/7/6 tricycle would benefit synthetic design of tigliane- and daphnane-related diterpenoids.  相似文献   

5.
Emerging antimicrobial resistance urges the discovery of antibiotics with unexplored, resistance-breaking mechanisms. Armeniaspirols represent a novel class of antibiotics with a unique spiro[4.4]non-8-ene scaffold and potent activities against Gram-positive pathogens. We report a concise total synthesis of (±) armeniaspirol A in six steps with a yield of 20.3% that includes the formation of the spirocycle through a copper-catalyzed radical cross-coupling reaction. In mechanistic biological experiments, armeniaspirol A exerted potent membrane depolarization, accounting for the pH-dependent antibiotic activity. Armeniaspirol A also disrupted the membrane potential and decreased oxygen consumption in mitochondria. In planar lipid bilayers and in unilamellar vesicles, armeniaspirol A transported protons across membranes in a protein-independent manner, demonstrating that armeniaspirol A acted as a protonophore. We provide evidence that this mechanism might account for the antibiotic activity of multiple chloropyrrole-containing natural products isolated from various origins that share a 4-acylphenol moiety coupled to chloropyrrole as a joint pharmacophore. We additionally describe an efflux-mediated mechanism of resistance against armeniaspirols.

The antibiotic armeniaspirol A depolarized bacterial and mammalian cell membranes through a protonophore activity, that accounts for its potent antibiotic effects. A total synthesis of (±) armeniaspirol A was achieved in six steps.  相似文献   

6.
The design of organometallic complexes is at the heart of modern organic chemistry and catalysis. Recently, on-surface synthesis has emerged as a disruptive paradigm to design previously precluded compounds and nanomaterials. Despite these advances, the field of organometallic chemistry on surfaces is still at its infancy. Here, we introduce a protocol to activate the inner diacetylene moieties of a molecular precursor by copper surface adatoms affording the formation of unprecedented organocopper metallacycles on Cu(111). The chemical structure of the resulting complexes is characterized by scanning probe microscopy and X-ray photoelectron spectroscopy, being complemented by density functional theory calculations and scanning probe microscopy simulations. Our results pave avenues to the engineering of organometallic compounds and steer the development of polyyne chemistry on surfaces.

The diacetylene skeletons of DNBD precursors are attacked on Cu(111) by copper adatoms resulting in the synthesis of organocopper metallacycles.  相似文献   

7.
Palau''amine has received a great deal of attention as an attractive synthetic target due to its intriguing molecular architecture and significant immunosuppressive activity, and we achieved its total synthesis in 2015. However, the synthesized palau''amine has not been readily applicable to the mechanistic study of immunosuppressive activity, because it requires 45 longest linear steps from a commercially available compound. Here, we report the short-step construction of the ABCDEF hexacyclic ring core of palau''amine. The construction of the CDE tricyclic ring core in a single step is achieved by our pKa concept for proceeding with unfavorable equilibrium reactions, and a palau''amine analog without the aminomethyl and chloride groups is synthesized in 20 longest linear steps from the same starting material. The palau''amine analog is confirmed to retain the immunosuppressive activity. The present synthetic approach for a palau''amine analog has the potential for use in the development of palau''amine probes for mechanistic elucidation.

A palau''amine analog (2) was synthesized from 2-cyclopentenone in 20 steps. The construction of the CDE tricyclic ring core in a single step is achieved by our pKa concept for proceeding with the unfavorable equilibrium reactions.  相似文献   

8.
We report a photocatalytic strategy for the chemodivergent radical benzylation of 4-cyanopyridines. The chemistry uses a single photoredox catalyst to generate benzyl radicals upon N–F bond activation of 2-alkyl N-fluorobenzamides. The judicious choice of different photocatalyst quenchers allowed us to select at will between mechanistically divergent processes. The two reaction manifolds, an ipso-substitution path proceeding via radical coupling and a Minisci-type addition, enabled selective access to regioisomeric C4 or C2 benzylated pyridines, respectively. Mechanistic investigations shed light on the origin of the chemoselectivity switch.

We report a photocatalytic strategy for the chemodivergent radical benzylation of 4-cyanopyridines. The chemistry uses a single photoredox catalyst to generate benzyl radicals upon N–F bond activation of 2-alkyl N-fluorobenzamides.  相似文献   

9.
Glycals are highly versatile and useful building blocks in the chemistry of carbohydrate and natural products. However, the practical synthesis of glycals remains a long-standing and mostly unsolved problem in synthetic chemistry. Herein, we present an unprecedented approach to make a variety of glycals using phosphonium hydrolysis-induced, P(v) intermediate-mediated E1cB elimination. The method provides a highly efficient, practical and scalable strategy for the synthesis of glycals with good generality and excellent yields. Furthermore, the strategy was successfully applied to late-stage modification of complex drug-like molecules. Additionally, the corresponding 1-deuterium-glycals were produced easily by simple tBuONa/D2O-hydrolysis–elimination. Mechanistic investigations indicated that the oxaphosphorane intermediate-mediated E1cB mechanism is responsible for the elimination reaction.

A novel glucosylphosphonium-hydrolysis induced E1cB-elimination provides a highly efficient, practical and scalable method for the synthesis of glycals with good compatibility and excellent yields.  相似文献   

10.
From being an aesthetic molecular object to a building block for the construction of molecular machines, catenanes and related mechanically interlocked molecules (MIMs) continue to attract immense interest in many research areas. Catenane chemistry is closely tied to that of rotaxanes and knots, and involves concepts like mechanical bonds, chemical topology and co-conformation that are unique to these molecules. Yet, because of their different topological structures and mechanical bond properties, there are some fundamental differences between the chemistry of catenanes and that of rotaxanes and knots although the boundary is sometimes blurred. Clearly distinguishing these differences, in aspects of bonding, structure, synthesis and properties, between catenanes and other MIMs is therefore of fundamental importance to understand their chemistry and explore the new opportunities from mechanical bonds.

Catenane chemistry is closely associated with that of rotaxane and knot, and this perspective highlights their similarities and differences in various aspects including synthesis, structure and properties.  相似文献   

11.
The first total synthesis of penicimutanin A (1) was achieved within 10 steps (LLS). Key innovations in this synthesis consist of (1) a highly efficient electro-oxidative dearomatization; (2) an unprecedented bisoxirane-directed intermolecular aldol reaction from the sterically hindered face of the ketone and (3) the diastereoselective one-step Meerwein–Eschenmoser–Claisen rearrangement enabling the construction of vicinal quaternary stereocenters. Related family members e.g. penicimutanolone (3) and penicimutatin (5) have also been synthesized alongside, elucidating their absolute configurations, hence the absolute configuration of 1.

The first total synthesis of penicimutanin A (1) was achieved within 10 steps (LLS).  相似文献   

12.
Short aliphatic groups are prevalent in bioactive small molecules and play an essential role in regulating physicochemistry and molecular recognition phenomena. Delineating their biological origins and significance have resulted in landmark developments in synthetic organic chemistry: Arigoni''s venerable synthesis of the chiral methyl group is a personal favourite. Whilst radioisotopes allow the steric footprint of the native group to be preserved, this strategy was never intended for therapeutic chemotype development. In contrast, leveraging H → F bioisosterism provides scope to complement the chiral, radioactive bioisostere portfolio and to reach unexplored areas of chiral chemical space for small molecule drug discovery. Accelerated by advances in I(i)/I(iii) catalysis, the current arsenal of achiral 2D and 3D drug discovery modules is rapidly expanding to include chiral units with unprecedented topologies and van der Waals volumes. This Perspective surveys key developments in the design and synthesis of short multivicinal fluoroalkanes under the auspices of main group catalysis paradigms.

Short aliphatic groups are prevalent in bioactive small molecules and play an essential role in regulating physicochemistry and molecular recognition phenomena.  相似文献   

13.
A novel classical kinetic resolution of 2-aryl-substituted or 2,3-disubstituted cyclobutanones of Baeyer–Villiger oxidation catalyzed by a Cu(ii)/SPDO complex is reported for the first time, producing normal lactones in excellent enantioselectivities (up to 96% ee) and regioselectivities (up to >20/1), along with unreacted ketones in excellent enantioselectivities (up to 99% ee). The current transformation features a wide substrate scope. Moreover, catalytic asymmetric total syntheses of natural eupomatilones 5 and 6 are achieved in nine steps from commercially available 3-methylcyclobutan-1-one.

A novel classical kinetic resolution of Baeyer–Villiger oxidation catalyzed by a Cu(ii)/SPDO complex with excellent enantioselectivity, regioselectivity and wide substrate scope is reported for the first time and explore the synthetic application.  相似文献   

14.
C(sp3)–H bond desaturation has been an attractive strategy in organic synthesis. Enamides are important structural fragments in pharmaceuticals and versatile synthons in organic synthesis. However, the dehydrogenation of amides usually occurs on the acyl side benefitting from enolate chemistry like the desaturation of ketones and esters. Herein, we demonstrate an Fe-assisted regioselective oxidative desaturation of amides, which provides an efficient approach to enamides and β-halogenated enamides.

A novel and regioselective N-α,β-desaturation and dehydrogenative N-β-halogenation of amides was developed. This chemistry with high selectivity and broad substrate scope provides an efficient approach to enamides from simple amides.  相似文献   

15.
A reasonable synthesis design by strategically integrating functional group manipulation into the ring system construction resulted in a short, enantioselective, gram-scale total synthesis of (−)-zephyranthine. The concise route includes a catalytic Michael/Michael cascade for the asymmetric synthesis of a penta-substituted cyclohexane with three contiguous stereogenic centers, a remarkable 8-step one-pot operation to easily assemble the zephyranthine tetracyclic skeleton, the regioselective construction of a double bond in the C ring and an asymmetric dihydroxylation. This synthesis is also flexible and paves a potential path to a variety of cyclohexylamine-fused tricyclic or polycyclic alkaloids.

A reasonable synthesis design by strategically integrating functional group manipulation into the ring system construction resulted in a short, enantioselective, gram-scale total synthesis of (−)-zephyranthine.  相似文献   

16.
Indole 2,5-diketopiperazines (DKPs) are an important type of metabolic cyclic dipeptides containing a tryptophan (Trp) unit possessing a range of interesting biological activities. The intriguing structural features and divergent activities have stimulated tremendous efforts towards their efficient synthesis. Herein, we report the development of a unified strategy for the synthesis of three Trp-containing DKPs, namely tryprostatin A, and maremycins A and B, via a sequential C–H activation strategy. The key Trp skeletons were synthesized from the inexpensive, readily available alanine via a Pd(ii)-catalyzed β-methyl C(sp3)–H monoarylation. A subsequent C2-selective prenylation of the resulting 6-OMe-Trp by Pd/norbornene-promoted C–H activation led to the total synthesis of tryprostatin A in 12 linear steps from alanine with 25% overall yield. Meanwhile, total syntheses of maremycins A and B were successfully accomplished using a sequential Pd-catalyzed methylene C(sp3)–H methylation as the key step in 15 linear steps from alanine.

Indole 2,5-diketopiperazines (DKPs) are an important type of metabolic cyclic dipeptides containing a tryptophan (Trp) unit possessing a range of interesting biological activities.  相似文献   

17.
l-Arogenate (also known as l-pretyrosine) is a primary metabolite on a branch of the shikimate biosynthetic pathway to aromatic amino acids. It plays a key role in the synthesis of plant secondary metabolites including alkaloids and the phenylpropanoids that are the key to carbon fixation. Yet understanding the control of arogenate metabolism has been hampered by its extreme instability and the lack of a versatile synthetic route to arogenate and its analogues. We now report a practical synthesis of l-arogenate in seven steps from O-benzyl l-tyrosine methyl ester in an overall yield of 20%. The synthetic route also delivers the fungal metabolite spiroarogenate, as well as a range of stable saturated and substituted analogues of arogenate. The key step in the synthesis is a carboxylative dearomatization by intramolecular electrophilic capture of tyrosine''s phenolic ring using an N-chloroformylimidazolidinone moiety, generating a versatile, functionalizable spirodienone intermediate.

l-Tyrosine provides a precursor for a practical synthesis of the unstable primary metabolite l-arogenate and some stabilised arogenate analogues.  相似文献   

18.
First stereoselective total synthesis of naturally occurring bioactive cyclodepsipeptide alveolaride C has been achieved using a convergent approach. This synthetic study enabled us to establish unambiguously the stereochemistry of three unassigned chiral centres embedded in the nonpeptidic segment as well as revised the stereochemistry of the proposed β-phenylalanine counterpart of the molecule. The key strategic features of this synthesis include Sharpless asymmetric dihydroxylation for installing the vicinal diol moiety, Julia–Kocienski olefination for constructing the aliphatic side chain, the Shiina protocol for intermolecular esterification, amide coupling and macrolactamization for the ring formation.

First total synthesis of natural cyclodepsipeptide alveolaride C has been accomplished with an unambiguous solution to its structural riddle.  相似文献   

19.
Methods for rapid identification of chemical tools are essential for the validation of emerging targets and to provide medicinal chemistry starting points for the development of new medicines. Here, we report a screening platform that combines ‘direct-to-biology’ high-throughput chemistry (D2B-HTC) with photoreactive fragments. The platform enabled the rapid synthesis of >1000 PhotoAffinity Bits (HTC-PhABits) in 384-well plates in 24 h and their subsequent screening as crude reaction products with a protein target without purification. Screening the HTC-PhABit library with carbonic anhydrase I (CAI) afforded 7 hits (0.7% hit rate), which were found to covalently crosslink in the Zn2+ binding pocket. A powerful advantage of the D2B-HTC screening platform is the ability to rapidly perform iterative design–make–test cycles, accelerating the development and optimisation of chemical tools and medicinal chemistry starting points with little investment of resource.

A photoreactive fragment screening platform employing direct-to-biology high-throughput chemistry (D2B-HTC) for the rapid iterative synthesis and screening of libraries of photoaffinity bits.  相似文献   

20.
Nature''s oligomeric macromolecules have been a long-standing source of inspiration for chemists producing foldamers. Natural systems are frequently conformationally stabilised by macrocyclisation, yet this approach has been rarely adopted in the field of foldamer chemistry. Here we present a new class of chiral cyclic trimers and tetramers formed by macrocyclisation of open-chain foldamer precursors. Symmetrical products are obtained via a [2 + 2] self-assembly approach, while full sequence control is demonstrated through linear synthesis and cyclisation of an unsymmetrical trimer. Structural characterisation is achieved through a combined X-ray and DFT approach, which indicates the tetramers adopt a near-planar conformation, while the trimers adopt a shallow bowl-like shape. Finally, a proof-of-concept experiment is conducted to demonstrate the macrocycles'' capacity for cation binding.

Dipole-controlled pre-organization enables the cyclization of sequence-defined foldamers into macrocycles. The structure and properties of trimeric and tetrameric macrocycles are explored, and their ability to bind cationic guests is demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号