首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Lewis/Brønsted catalytic properties of the Metal–Organic Framework (MOF) nodes can be tuned by simply controlling the solvent employed in the synthetic procedure. In this work, we demonstrate that Hf-MOF-808 can be prepared from a material with a higher amount of Brønsted acid sites, via modulated hydrothermal synthesis, to a material with a higher proportion of unsaturated Hf Lewis acid sites, via modulated solvothermal synthesis. The Lewis/Brønsted acid properties of the resultant metallic clusters have been studied by different characterization techniques, including XAS, FTIR and NMR spectroscopies, combined with a DFT study. The different nature of the Hf-MOF-808 materials allows their application as selective catalysts in different target reactions requiring Lewis, Brønsted or Lewis–Brønsted acid pairs.

The Brønsted/Lewis acid properties of Hf-MOF-808 can be tuned by simply controlling the solvent employed in its synthesis, with direct catalytic implications on the activity and selectivity of organic reactions sensitive to the active site nature.  相似文献   

2.
An efficient synthetic method to prepare highly substituted indenes in moderate to excellent yields that relies on Brønsted acid catalyzed Friedel–Crafts reaction of homoallylic alcohols under mild conditions is described.  相似文献   

3.
Catalysis is central to contemporary synthetic chemistry. There has been a recent recognition that the rates of photochemical reactions can be profoundly impacted by the use of Lewis acid catalysts and co-catalysts. Herein, we show that Brønsted acids can also modulate the reactivity of excited-state organic reactions. Brønsted acids dramatically increase the rate of Ru(bpy)32+-sensitized [2 + 2] photocycloadditions between C-cinnamoyl imidazoles and a range of electron-rich alkene reaction partners. A combination of experimental and computational studies supports a mechanism in which the Brønsted acid co-catalyst accelerates triplet energy transfer from the excited-state [Ru*(bpy)3]2+ chromophore to the Brønsted acid activated C-cinnamoyl imidazole. Computational evidence further suggests the importance of driving force as well as geometrical reorganization, in which the protonation of the imidazole decreases the reorganization penalty during the energy transfer event.

Brønsted acids can catalyze triplet energy transfer reactions, and DFT computations suggest the unexpected importance of reorganization energy for catalysis.  相似文献   

4.
Lewis acidic aluminum in zeolites, particularly acidity that is inherent to the framework, is an indeterminate concept. A fraction of framework aluminum changes geometry to octahedral coordination in the proton form of zeolite mordenite. Such octahedrally coordinated aluminum is the precursor of a Lewis acid site and its formation is accompanied by a loss in Brønsted acidity. Herein, we show that such Lewis acid sites have a preferred location in the pore structure of mordenite. A greater proportion of these Lewis acid sites resides in the side-pockets than in the main channel. By reverting the octahedrally coordinated aluminum back to a tetrahedral geometry, the corresponding Brønsted acid sites are restored with a concomitant loss in the ability to form Lewis acid sites. Thereby, reversible octahedral–tetrahedral aluminum coordination provides a means to indirectly switch between Lewis and Brønsted acidity. This phenomenon is unique to Lewis acidity that is inherent to the framework, thereby distinguishing it from Lewis acidity originating from extra-framework species. Furthermore, the transformation of framework aluminum into octahedral coordination is decoupled from the generation of distorted tetrahedrally coordinated aluminum, where the latter gives rise to the IR band at 3660 cm−1 in the OH stretching region.

Framework-associated aluminum is demonstrated to facilitate a reversible switch between Lewis and Brønsted acidity in zeolites with the Lewis acid sites preferentially populating the side-pockets in the case of mordenite.  相似文献   

5.
6.
Phosphine-catalyzed highly enantioselective γ-additions of 5H-thiazol-4-ones and 5H-oxazol-4-ones to allenoates have been developed for the first time. With the employment of amino-acid derived bifunctional phosphines, a wide range of substituted 5H-thiazol-4-one and 5H-oxazol-4-one derivatives bearing heteroatom (S or O)-containing tertiary chiral centers were constructed in high yields and excellent enantioselectivities. The reported method provides facile access to enantioenriched tertiary thioethers/alcohols. The mechanism of the γ-addition reaction was investigated by performing DFT calculations, and the hydrogen bonding interactions between the Brønsted acid moiety of the phosphine catalysts and the “CO” unit of the donor molecules were shown to be crucial in asymmetric induction.  相似文献   

7.
Three magnetically recoverable Brønsted acidic calix[n]arene derivatives were successfully constructed by immobilizing calix[n]arene sulfonic acids onto silica-coated magnetic nanoparticles, a process, which allows calix[n]arene derivatives to acquire magnetic properties. All of the magnetically recoverable Brønsted acidic calix[n]arenes efficiently catalyze the coupling of electron-rich arenes with some alcohols in water. After separation and recovery from the reaction mixture by a simple magnet, these Brønsted acidic calix[n]arenes can be recycled many times without losing their catalytic activity.  相似文献   

8.
We report herein catalytic asymmetric transformations of racemic α-borylmethyl-(E)-crotylboronate. The Brønsted acid-catalyzed kinetic resolution–allylboration reaction sequence of the racemic reagent gave (Z)-δ-hydroxymethyl-anti-homoallylic alcohols with high Z-selectivities and enantioselectivities upon oxidative workup. In parallel, enantioconvergent pathways were utilized to synthesize chiral nonracemic 1,5-diols and α,β-unsaturated aldehydes with excellent optical purity.

We report herein catalytic asymmetric transformations of racemic α-borylmethyl-(E)-crotylboronate.  相似文献   

9.
The oxidative bromination of arenes was induced by a vanadium catalyst in the presence of a bromide salt and a Brønsted acid or a Lewis acid under molecular oxygen, which provides an eco-friendly bromination method as compared with a conventional bromination one with bromine. This catalytic reaction could be applied to the bromination of alkenes and alkynes to give the corresponding vic-bromides. Use of aluminum halide as a Lewis acid in place of a Brønsted acid was demonstrated to provide a more practical protocol for the oxidative bromination. From ketones, α-bromination products were obtained. AlBr3 was found to serve as both a bromide source and a Lewis acid to induce the bromination smoothly. 51V NMR experiment showed that this catalytic bromination is likely to depend on the redox cycle of a vanadium catalyst under molecular oxygen.  相似文献   

10.
Five new C2-symmetric chiral ligands of 2,5-bis(imidazolinyl)thiophene (L1–L3) and 2,5-bis(oxazolinyl)thiophene (L4 and L5) were synthesized from thiophene-2,5-dicarboxylic acid (1) with enantiopure amino alcohols (4a–c) in excellent optical purity and chemical yield. The utility of these new chiral ligands for Friedel–Crafts asymmetric alkylation was explored. Subsequently, the optimized tridentate ligand L5 and Cu(OTf)2 catalyst (15 mol%) in toluene for 48 h promoted Friedel–Crafts asymmetric alkylation in moderate to good yields (up to 76%) and with good enantioselectivity (up to 81% ee). The bis(oxazolinyl)thiophene ligands were more potent than bis(imidazolinyl)thiophene analogues for the asymmetric induction of the Friedel–Crafts asymmetric alkylation.  相似文献   

11.
ortho-Mercaptobenzoic acid and ortho-mercaptophenols were discovered as efficient thiol catalysts of both the intramolecular Morita-Baylis-Hillman (MBH) and Rauhut-Currier (RC) reaction. High reaction rates were achieved under mildly basic, aqueous conditions. The unprecedented catalytic activity of these protic nucleophiles could originate from a Brønsted acid induced destabilization of intermediate thioethers and thus represent a unique mechanism of multifunctional Lewis base catalysis.  相似文献   

12.
[AAE]X composed of amino acid ester cations is a sort of typically “bio-based” protic ionic liquids (PILs). They possess potential Brønsted acidity due to the active hydrogens on their cations. The Brønsted acidity of [AAE]X PILs in green solvents (water and ethanol) at room temperature was systematically studied. Various frameworks of amino acid ester cations and four anions were investigated in this work from the viewpoint of structure–property relationship. Four different ways were used to study the acidity. Acid dissociation constants (pKa) of [AAE]X determined by the OIM (overlapping indicator method) were from 7.10 to 7.73 in water and from 8.54 to 9.05 in ethanol. The pKa values determined by the PTM (potential titration method) were from 7.12 to 7.82 in water. Their Hammett acidity function (H0) values (0.05 mol·L−1) were about 4.6 in water. In addition, the pKa values obtained by the DFT (proton-transfer reactions) were from 7.11 to 7.83 in water and from 8.54 to 9.34 in ethanol, respectively. The data revealed that the cationic structures of [AAE]X had little effect and the anions had no effect on the acidity of [AAE]X. At the same time, the OIM, PTM, Hammett method and DFT method were reliable for determining the acidic strength of [AAE]X in this study.  相似文献   

13.
A family of iron(ii) carbonyl hydride complexes supported by either a bifunctional PNP ligand containing a secondary amine, or a PNP ligand with a tertiary amine that prevents metal–ligand cooperativity, were found to promote the catalytic hydrogenation of CO2 to formate in the presence of Brønsted base. In both cases a remarkable enhancement in catalytic activity was observed upon the addition of Lewis acid (LA) co-catalysts. For the secondary amine supported system, turnover numbers of approximately 9000 for formate production were achieved, while for catalysts supported by the tertiary amine ligand, nearly 60 000 turnovers were observed; the highest activity reported for an earth abundant catalyst to date. The LA co-catalysts raise the turnover number by more than an order of magnitude in each case. In the secondary amine system, mechanistic investigations implicated the LA in disrupting an intramolecular hydrogen bond between the PNP ligand N–H moiety and the carbonyl oxygen of a formate ligand in the catalytic resting state. This destabilization of the iron-bound formate accelerates product extrusion, the rate-limiting step in catalysis. In systems supported by ligands with the tertiary amine, it was demonstrated that the LA enhancement originates from cation assisted substitution of formate for dihydrogen during the slow step in catalysis.  相似文献   

14.
Nitrogen adsorption on SiO2, -Al2O3, TiO2, and sulphated zircona (SO 2- 4 /ZrO2) is studied by Fourier transform IR spectroscopy. Integrated absorption coefficients for the bands due to the N—N vibrations in nitrogen complexes with Brønsted and Lewis acid sites are determined. A general correlation between integrated absorption coefficients and the positions of N—N bands of nitrogen interacting with the above sites in zeolites and oxides is discussed. The orientation of a nitrogen molecule relative to Brønsted and Lewis acid sites is calculated ab initio using a 6-31G** basis set.Translated from Kinetika i Kataliz, Vol. 46, No. 1, 2005, pp. 115–121.Original Russian Text Copyright © 2005 by Malyshev, Paukshtis, Malysheva.  相似文献   

15.
A practical and environmentally benign Brønsted acid?catalyzed protocol for the preparation of all-carbon tetrasubstituted allenes, consisting in the direct SN? addition of tri- or dimethoxy arenes or allyltrimethylsilane to tertiary propargylic alcohols, has been developed. In addition, a straightforward synthesis of densely substituted 2H-chromenes by metal-free tandem allenylation/heterocyclization reaction of methoxyphenols and tertiary alkynols is presented.  相似文献   

16.
The hydrogenation of benzene and toluene was investigated over US-SSY, -Al2O3, and Ha1-MCM-41 supported platinum catalysts. The acidity of catalyst supports was measured by IR spectra of pyridine adsorption. On the Brönsted acid supported catalyst, both the hexacyclic saturation product and the pentacyclic one, the hydroisomerization product, were observed, and these two products were revealed to be primary reaction products. The two products were proposed to be formed competitively on Brönsted acid sites with carbonium ions as the reaction intermediate. By contrast, no hydroisomerization product was found on Lewis acid supported catalysts. It was inferred that the electron-deficient reaction intermediate formed on Lewis acids could not undertake any skeletal isomerization process to give a pentacyclic saturation product.  相似文献   

17.
In ion pairing catalysis, the structures of late intermediates and transition states are key to understanding and further development of the field. Typically, a plethora of transition states is explored computationally. However, especially for ion pairs the access to energetics via computational chemistry is difficult and experimental data is rare. Here, we present for the first time extensive NMR spectroscopic insights about the ternary complex of a catalyst, substrate, and reagent in ion pair catalysis exemplified by chiral Brønsted acid-catalyzed transfer hydrogenation. Quantum chemistry calculations were validated by a large amount of NMR data for the structural and energetic assessment of binary and ternary complexes. In the ternary complexes, the expected catalyst/imine H-bond switches to an unexpected O–H–N structure, not yet observed in the multiple hydrogen-bond donor–acceptor situation such as disulfonimides (DSIs). This arrangement facilitates the hydride transfer from the Hantzsch ester in the transition states. In these reactions with very high isomerization barriers preventing fast pre-equilibration, the reaction barriers from the ternary complex to the transition states determine the enantioselectivity, which deviates from the relative transition state energies. Overall, the weak hydrogen bonding, the hydrogen bond switching and the special geometrical adaptation of substrates in disulfonimide catalyst complexes explain the robustness towards more challenging substrates and show that DSIs have the potential to combine high flexibility and high stereoselectivity.

In ion pairing catalysis, the structures of advanced intermediates are often not accessible. Here, we present a combined experimental and computational study of ternary complexes in Brønsted acid catalysis, which show unexpected H-bond switching.  相似文献   

18.
Chiral 2-oxazolines are valuable building blocks and famous ligands for asymmetric catalysis. The most common synthesis involves the reaction of an amino alcohol with a carboxylic acid. In this paper, an efficient synthesis of 2-oxazolines has been achieved via the stereospecific isomerization of 3-amido-2-phenyl azetidines. The reactions were studied in the presence of both Brønsted and Lewis acids, and Cu(OTf)2 was found to be the most effective.  相似文献   

19.
Metal oxo (M Created by potrace 1.16, written by Peter Selinger 2001-2019 O) complexes are common oxidants in chemical and biological systems. The use of Lewis acids to activate metal oxo species has attracted great interest in recent years, especially after the discovery of the CaMn4O5 cluster in the oxygen-evolving centre of photosystem II. Strong Lewis acids such as Sc3+ and BF3, as well as strong Brønsted acids such as H2SO4 and CF3SO3H, are commonly used to activate metal oxo species. In this work, we demonstrate that relatively weak Lewis acids such as Ca2+ and other group 2 metal ions, as well as weak Brønsted acids such as CH3CO2H, can readily activate the stable RuO4 complex towards the oxidation of alkanes. Notably, the use of Ca2+ and CH3CO2H together produces a remarkable cooperative effect on RuO4, resulting in a much more efficient oxidant. DFT calculations show that Ca2+ and CH3CO2H can bind to two oxo ligands to form a chelate ring. This results in substantial lowering of the barrier for hydrogen atom abstraction from cyclohexane.

Combining a weak Lewis acid and weak Brønsted acid produces strong cooperative effects for activating metal oxo species towards alkane oxidation.  相似文献   

20.
This paper describes a new total synthesis for (S)-2-amino-7-methoxytetralin, (S)-7-MeO-AT, from l-aspartic acid in an overall yield of 10% over nine steps. The major loss was ascribed to a key intramolecular Friedel–Crafts cyclization step, which afforded up to 36% yield. Attempts to perform a Friedel–Crafts cyclization of an intermediate phthalimide protected amino alcohol 13 did not give the desired protected (S)-7-MeO-AT. On the other hand, two new isoindolo[1,2-a]isoquinolinone derivatives 14 and 15, were isolated in 21 and 11% yield, respectively. The yield of 15 was improved to 70%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号