首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this research, statistical models are formulated to study the effect of the health crisis arising from COVID-19 in global markets. Breakpoints in the price series of stock indexes are considered. Such indexes are used as an approximation of the stock markets in different countries, taking into account that they are indicative of these markets because of their composition. The main results obtained in this investigation highlight that countries with better institutional and economic conditions are less affected by the pandemic. In addition, the effect of the health index in the models is associated with their non-significant parameters. This is due to that the health index used in the modeling would not determine the different capacities of the countries analyzed to respond efficiently to the pandemic effect. Therefore, the contagion is the preponderant factor when analyzing the structural breakdown that occurred in the world economy.  相似文献   

2.
3.
Ru-Qi Li 《中国物理 B》2021,30(12):120202-120202
Since December 2019, the COVID-19 epidemic has repeatedly hit countries around the world due to various factors such as trade, national policies and the natural environment. To closely monitor the emergence of new COVID-19 clusters and ensure high prediction accuracy, we develop a new prediction framework for studying the spread of epidemic on networks based on partial differential equations (PDEs), which captures epidemic diffusion along the edges of a network driven by population flow data. In this paper, we focus on the effect of the population movement on the spread of COVID-19 in several cities from different geographic regions in China for describing the transmission characteristics of COVID-19. Experiment results show that the PDE model obtains relatively good prediction results compared with several typical mathematical models. Furthermore, we study the effectiveness of intervention measures, such as traffic lockdowns and social distancing, which provides a new approach for quantifying the effectiveness of the government policies toward controlling COVID-19 via the adaptive parameters of the model. To our knowledge, this work is the first attempt to apply the PDE model on networks with Baidu Migration Data for COVID-19 prediction.  相似文献   

4.
The COVID-19 pandemic caused important health and societal damage across the world in 2020–2022. Its study represents a tremendous challenge for the scientific community. The correct evaluation and analysis of the situation can lead to the elaboration of the most efficient strategies and policies to control and mitigate its propagation. The paper proposes a Multi-Criteria Decision Support (MCDS) based on the combination of three methods: the Group Analytic Hierarchy Process (GAHP), which is a subjective group weighting method; Extended Entropy Weighting Method (EEWM), which is an objective weighting method; and the COmplex PRoportional ASsessment (COPRAS), which is a multi-criteria method. The COPRAS uses the combined weights calculated by the GAHP and EEWM. The sum normalization (SN) is considered for COPRAS and EEWM. An extended entropy is proposed in EEWM. The MCDS is implemented for the development of a complex COVID-19 indicator called COVIND, which includes several countries’ COVID-19 indicators, over a fourth COVID-19 wave, for a group of European countries. Based on these indicators, a ranking of the countries is obtained. An analysis of the obtained rankings is realized by the variation of two parameters: a parameter that describes the combination of weights obtained with EEWM and GAHP and the parameter of extended entropy function. A correlation analysis between the new indicator and the general country indicators is performed. The MCDS provides policy makers with a decision support able to synthesize the available information on the fourth wave of the COVID-19 pandemic.  相似文献   

5.
The pandemic scenery caused by the new coronavirus, called SARS-CoV-2, increased interest in statistical models capable of projecting the evolution of the number of cases (and associated deaths) due to COVID-19 in countries, states and/or cities. This interest is mainly due to the fact that the projections may help the government agencies in making decisions in relation to procedures of prevention of the disease. Since the growth of the number of cases (and deaths) of COVID-19, in general, has presented a heterogeneous evolution over time, it is important that the modeling procedure is capable of identifying periods with different growth rates and proposing an adequate model for each period. Here, we present a modeling procedure based on the fit of a piecewise growth model for the cumulative number of deaths. We opt to focus on the modeling of the cumulative number of deaths because, other than for the number of cases, these values do not depend on the number of diagnostic tests performed. In the proposed approach, the model is updated in the course of the pandemic, and whenever a “new” period of the pandemic is identified, it creates a new sub-dataset composed of the cumulative number of deaths registered from the change point and a new growth model is chosen for that period. Three growth models were fitted for each period: exponential, logistic and Gompertz models. The best model for the cumulative number of deaths recorded is the one with the smallest mean square error and the smallest Akaike information criterion (AIC) and Bayesian information criterion (BIC) values. This approach is illustrated in a case study, in which we model the number of deaths due to COVID-19 recorded in the State of São Paulo, Brazil. The results have shown that the fit of a piecewise model is very effective for explaining the different periods of the pandemic evolution.  相似文献   

6.
We analyze the time series of soccer matches in a model-free way using data for the German soccer league (Bundesliga). We argue that the goal difference is a better measure for the overall fitness of a team than the number of points. It is shown that the time evolution of the table during a season can be interpreted as a random walk with an underlying constant drift. Variations of the overall fitness mainly occur during the summer break but not during a season. The fitness correlation shows a long-time decay on the scale of a quarter century. Some typical soccer myths are analyzed in detail. It is shown that losing but no winning streaks exist. For this analysis ideas from multidimensional NMR experiments have been borrowed. Furthermore, beyond the general home advantage there is no statistically relevant indication of a team-specific home fitness. Based on these insights a framework for a statistical characterization of the results of a soccer league is introduced and some general consequences for the prediction of soccer results are formulated.  相似文献   

7.
The purpose of this research is to compare the risk transfer structure in Central and Eastern European and Western European stock markets during the 2007–2009 financial crisis and the COVID-19 pandemic. Similar to the global financial crisis (GFC), the spread of coronavirus (COVID-19) created a significant level of risk, causing investors to suffer losses in a very short period of time. We use a variety of methods, including nonstandard like mutual information and transfer entropy. The results that we obtained indicate that there are significant nonlinear correlations in the capital markets that can be practically applied for investment portfolio optimization. From an investor perspective, our findings suggest that in the wake of global crisis and pandemic outbreak, the benefits of diversification will be limited by the transfer of funds between developed and developing country markets. Our study provides an insight into the risk transfer theory in developed and emerging markets as well as a cutting-edge methodology designed for analyzing the connectedness of markets. We contribute to the studies which have examined the different stock markets’ response to different turbulences. The study confirms that specific market effects can still play a significant role because of the interconnection of different sectors of the global economy.  相似文献   

8.
The need to provide accurate predictions in the evolution of the COVID-19 epidemic has motivated the development of different epidemiological models. These models require a careful calibration of their parameters to capture the dynamics of the phenomena and the uncertainty in the data. This work analyzes different parameters related to the personal evolution of COVID-19 (i.e., time of recovery, length of stay in hospital and delay in hospitalization). A Bayesian Survival Analysis is performed considering the age factor and period of the epidemic as fixed predictors to understand how these features influence the evolution of the epidemic. These results can be easily included in the epidemiological SIR model to make prediction results more stable.  相似文献   

9.
The global economy is under great shock again in 2020 due to the COVID-19 pandemic; it has not been long since the global financial crisis in 2008. Therefore, we investigate the evolution of the complexity of the cryptocurrency market and analyze the characteristics from the past bull market in 2017 to the present the COVID-19 pandemic. To confirm the evolutionary complexity of the cryptocurrency market, three general complexity analyses based on nonlinear measures were used: approximate entropy (ApEn), sample entropy (SampEn), and Lempel-Ziv complexity (LZ). We analyzed the market complexity/unpredictability for 43 cryptocurrency prices that have been trading until recently. In addition, three non-parametric tests suitable for non-normal distribution comparison were used to cross-check quantitatively. Finally, using the sliding time window analysis, we observed the change in the complexity of the cryptocurrency market according to events such as the COVID-19 pandemic and vaccination. This study is the first to confirm the complexity/unpredictability of the cryptocurrency market from the bull market to the COVID-19 pandemic outbreak. We find that ApEn, SampEn, and LZ complexity metrics of all markets could not generalize the COVID-19 effect of the complexity due to different patterns. However, market unpredictability is increasing by the ongoing health crisis.  相似文献   

10.
The aim of this study is to assess and compare changes in regularity in the 36 European and the U.S. stock market indices within major turbulence periods. Two periods are investigated: the Global Financial Crisis in 2007–2009 and the COVID-19 pandemic outbreak in 2020–2021. The proposed research hypothesis states that entropy of an equity market index decreases during turbulence periods, which implies that regularity and predictability of a stock market index returns increase in such cases. To capture sequential regularity in daily time series of stock market indices, the Sample Entropy algorithm (SampEn) is used. Changes in the SampEn values before and during the particular turbulence period are estimated. The empirical findings are unambiguous and confirm no reason to reject the research hypothesis. Moreover, additional formal statistical analyses indicate that the SampEn results are similar both for developed and emerging European economies. Furthermore, the rolling-window procedure is utilized to assess the evolution of SampEn over time.  相似文献   

11.
Competitive sports analysis is a popular and valuable research topic in recent years. Sports are competitive, fast paced, and teamwork based. In this article, we introduce a generalized and effective system MatchOrchestra to analyze competitive team sports based on musical score and orchestra metaphor. MatchOrchestra provides views about player performance, team status, match tempo, player cooperation and confrontation, which can help analysts in performing specific analysis tasks. To demonstrate the usability of our proposed system, representative case studies were conducted on an NBA (National Basketball Association) game and also extend to apply in football match, which are both typical competitive sports matches.  相似文献   

12.
An information outbreak occurs on social media along with the COVID-19 pandemic and leads to an infodemic. Predicting the popularity of online content, known as cascade prediction, allows for not only catching in advance information that deserves attention, but also identifying false information that will widely spread and require quick response to mitigate its negative impact. Among the various information diffusion patterns leveraged in previous works, the spillover effect of the information exposed to users on their decisions to participate in diffusing certain information has not been studied. In this paper, we focus on the diffusion of information related to COVID-19 preventive measures due to its special role in consolidating public efforts to slow down the spread of the virus. Through our collected Twitter dataset, we validate the existence of the spillover effects. Building on this finding, we propose extensions to three cascade prediction methods based on Graph Neural Networks (GNNs). Experiments conducted on our dataset demonstrated that the use of the identified spillover effects significantly improves the state-of-the-art GNN methods in predicting the popularity of not only preventive measure messages, but also other COVID-19 messages.  相似文献   

13.
With population explosion and globalization, the spread of infectious diseases has been a major concern. In 2019, a newly identified type of Coronavirus caused an outbreak of respiratory illness, popularly known as COVID-19, and became a pandemic. Although enormous efforts have been made to understand the spread of COVID-19, our knowledge of the COVID-19 dynamics still remains limited. The present study employs the concepts of chaos theory to examine the temporal dynamic complexity of COVID-19 around the world. The false nearest neighbor (FNN) method is applied to determine the dimensionality and, hence, the complexity of the COVID-19 dynamics. The methodology involves: (1) reconstruction of a single-variable COVID-19 time series in a multi-dimensional phase space to represent the underlying dynamics; and (2) identification of “false” neighbors in the reconstructed phase space and estimation of the dimension of the COVID-19 series. For implementation, COVID-19 data from 40 countries/regions around the world are studied. Two types of COVID-19 data are analyzed: (1) daily COVID-19 cases; and (2) daily COVID-19 deaths. The results for the 40 countries/regions indicate that: (1) the dynamics of COVID-19 cases exhibit low- to medium-level complexity, with dimensionality in the range 3 to 7; and (2) the dynamics of COVID-19 deaths exhibit complexity anywhere from low to high, with dimensionality ranging from 3 to 13. The results also suggest that the complexity of the dynamics of COVID-19 deaths is greater than or at least equal to that of the dynamics of COVID-19 cases for most (three-fourths) of the countries/regions. These results have important implications for modeling and predicting the spread of COVID-19 (and other infectious diseases), especially in the identification of the appropriate complexity of models.  相似文献   

14.
We investigate the dynamics of football matches. Our goal is to characterize statistically the temporal sequence of ball movements in this collective sport game, searching for traits of complex behavior. Data were collected over a variety of matches in South American, European and World championships throughout 2005 and 2006. We show that the statistics of ball touches presents power-law tails and can be described by q-gamma distributions. To explain such behavior we propose a model that provides information on the characteristics of football dynamics. Furthermore, we discuss the statistics of duration of out-of-play intervals, not directly related to the previous scenario.  相似文献   

15.
Substitution is an essential tool for a coach to influence the match. Factors like the injury of a player, required tactical changes, or underperformance of a player initiates substitutions. This study aims to predict the physical performance of individual players in an early phase of the match to provide additional information to the coach for his decision on substitutions. Tracking data of individual players, except for goalkeepers, from 302 elite soccer matches of the Dutch ‘Eredivisie’ 2018–2019 season were used to enable the prediction of the individual physical performance. The players’ physical performance is expressed in the variables distance covered, distance in speed category, and energy expenditure in power category. The individualized normalized variables were used to build machine learning models that predict whether players will achieve 100%, 95%, or 90% of their average physical performance in a match. The tree-based algorithms Random Forest and Decision Tree were applied to build the models. A simple Naïve Bayes algorithm was used as the baseline model to support the superiority of the tree-based algorithms. The machine learning technique Random Forest combined with the variable energy expenditure in the power category was the most precise. The combination of Random Forest and energy expenditure in the power category resulted in precision in predicting performance and underperformance after 15 min in a match, and the values were 0.91, 0.88, and 0.92 for the thresholds 100%, 95%, and 90%, respectively. To conclude, it is possible to predict the physical performance of individual players in an early phase of the match. These findings offer opportunities to support coaches in making more informed decisions on player substitutions in elite soccer.  相似文献   

16.
A global event such as the COVID-19 crisis presents new, often unexpected responses that are fascinating to investigate from both scientific and social standpoints. Despite several documented similarities, the coronavirus pandemic is clearly distinct from the 1918 flu pandemic in terms of our exponentially increased, almost instantaneous ability to access/share information, offering an unprecedented opportunity to visualise rippling effects of global events across space and time. Personal devices provide “big data” on people’s movement, the environment and economic trends, while access to the unprecedented flurry in scientific publications and media posts provides a measure of the response of the educated world to the crisis. Most bibliometric (co-authorship, co-citation, or bibliographic coupling) analyses ignore the time dimension, but COVID-19 has made it possible to perform a detailed temporal investigation into the pandemic. Here, we report a comprehensive network analysis based on more than 20,000 published documents on viral epidemics, authored by over 75,000 individuals from 140 nations in the past one year of the crisis. Unlike the 1918 flu pandemic, access to published data over the past two decades enabled a comparison of publishing trends between the ongoing COVID-19 pandemic and those of the 2003 SARS epidemic to study changes in thematic foci and societal pressures dictating research over the course of a crisis.  相似文献   

17.
Lockdown procedures have been proven successful in mitigating the spread of the viruses in this COVID-19 pandemic, but they also have devastating impact on the economy. We use a modified Susceptible-Infectious-Recovered-Deceased model with time dependent infection rate to simulate how the infection is spread under lockdown. The economic cost due to the loss of workforce and incurred medical expenses is evaluated with a simple model. We find the best strategy, meaning the smallest economic cost for the entire course of the pandemic, is to keep the strict lockdown as long as possible.  相似文献   

18.
A year and a half has passed since the outbreak of the COVID-19 pandemic. Mathematical models to predict infection are expected and many studies have been conducted. In this study, a new interpretation was created that could reproduce the daily positive cases in Tokyo using only a simple SIR model. In addition, the data on the ratio of transfer to delta variants could also be simulated. It is anticipated that this interpretation will be a basis for the development of forecasting methods.  相似文献   

19.
The financial market is a complex system, which has become more complicated due to the sudden impact of the COVID-19 pandemic in 2020. As a result there may be much higher degree of uncertainty and volatility clustering in stock markets. How does this “black swan” event affect the fractal behaviors of the stock market? How to improve the forecasting accuracy after that? Here we study the multifractal behaviors of 5-min time series of CSI300 and S&P500, which represents the two stock markets of China and United States. Using the Overlapped Sliding Window-based Multifractal Detrended Fluctuation Analysis (OSW-MF-DFA) method, we found that the two markets always have multifractal characteristics, and the degree of fractal intensified during the first panic period of pandemic. Based on the long and short-term memory which are described by fractal test results, we use the Gated Recurrent Unit (GRU) neural network model to forecast these indices. We found that during the large volatility clustering period, the prediction accuracy of the time series can be significantly improved by adding the time-varying Hurst index to the GRU neural network.  相似文献   

20.
We analyze how the COVID-19 pandemic affected the trade of products between countries. With this aim, using the United Nations Comtrade database, we perform a Google matrix analysis of the multiproduct World Trade Network (WTN) for the years 2018–2020, comprising the emergence of the COVID-19 as a global pandemic. The applied algorithms—PageRank, CheiRank and the reduced Google matrix—take into account the multiplicity of the WTN links, providing new insights into international trade compared to the usual import–export analysis. These complex networks analysis algorithms establish new rankings and trade balances of countries and products considering all countries on equal grounds, independent of their wealth, and every product on the basis of its relative exchanged volumes. In comparison with the pre-COVID-19 period, significant changes in these metrics occurred for the year 2020, highlighting a major rewiring of the international trade flows induced by the COVID-19 pandemic crisis. We define a new PageRank–CheiRank product trade balance, either export or import-oriented, which is significantly perturbed by the pandemic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号