首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The crystal structure of natural titanium-containing ludwigite has been refined. The unit-cell parameters are a = 9.260 ± 0.002 Å, b = 12.294± 0.002 Å, c = 3.0236± 0.0005 Å, sp. gr. Pbam, and R = 0.0288. The observed cation distribution over the M1-M4 positions corresponds to the structural formula (Mg0.5)(Mg1.0)(Mg0.338Fe 0.162 2+ )(Fe 0.47 3+ Ti 0.21 4+ Mg 0.15 2+ Al 0.10 3+ Fe 0.07 2+ (BO3)O2. Highly charged titanium ions in the M4 position are balanced mainly with magnesium and not with divalent iron ions.  相似文献   

2.
Diffusion coefficients of various polyvalent ions (Sn2+, As3+, As5+, Sb3+, Sb5+, Cr3+, Ti4+, V4+, V5+ and Fe3+) were measured in melts with the basic compositions of 10CaO·10 BaO·10Al2O3·70SiO2 and 10CaO·10BaO·15Al2O3·65SiO2 by means of square-wave voltammetry. At temperatures in the range of 1300-1600 °C, linear correlations between logD and 1/T were observed. At 1400 °C, the diffusion coefficients obtained are compared with those obtained from other glass melt compositions.  相似文献   

3.
Two samples of mineral mariinskite have been investigated by single-crystal X-ray diffraction, and their formulas were established to be Cr1.43Al0.64Be0.9O4 (sample 1) and Cr1.32Al0.74Be0.9O4 (sample 2). The parameters of their orthorhombic cells are, respectively, a = 4.487(1) Å, b = 5.629(1) Å, and c = 9.732(2) Å and a = 4.478(1) Å, b = 5.620(1) Å, and c = 9.746(2) Å; sp. gr. P212121. The structures of samples 1 and 2 were solved by direct methods and refined in the anisotropic approximation of thermal atomic vibrations to R = 8.9 and 6.06%, respectively. Two components coexist in the mineral crystal structure, which belong to olivine-type structure and are interrelated through reflection in the mirror symmetry plane passing through close-packed layers. The presence of additional octahedral sites (which are statistically occupied by Cr3+ ions in the same way as vacancies in principal sites (occupancy ~80%)) in the mariinskite structure lowers the mineral symmetry from the centrosymmetric sp. gr. Pcmn, characteristic of olivine-group minerals, to the acentric sp. gr. P212121.  相似文献   

4.
It is shown that the real composition and structure of phases belonging to the sillenite family can be determined using a complex of techniques (diffraction methods, vibrational and X-ray absorption spectroscopy, and electron probe X-ray microanalysis) with a subsequent crystal-chemical analysis of the data. Refined compositions are presented for phases of nominal composition Bi24 M 2O40 with M = Zn2+, Al3+, Ga3+, Fe3+, Si4+, Ti4+, Mn4+, and P5+, which demonstrate types and concentrations of point defects as functions of the M type.  相似文献   

5.
《Journal of Non》2007,353(11-12):1070-1077
The structural properties of xCr2O3–(40  x)Fe2O3–60P2O5, 0  x  10 (mol%) glasses have been investigated by Raman and Mössbauer spectroscopies, X-ray diffraction (XRD) and differential scanning calorimetry (DSC). The Raman spectra show that the addition of up to 5.3 mol% Cr2O3 does not produce any changes in the glass structure, which consists predominantly of pyrophosphate, Q1, units. This is in accordance with O/P  3.5 for these glasses. The increase in glass density and Tg that occurs with increasing Cr2O3 suggests the strengthening of glass network. The Mössbauer spectra indicate that the Fe2+/Fetot ratio increases from 0.13 to 0.28 with increasing Cr2O3 content up to 5.3 mol%, which can be related to an increase in the melting temperature from 1423 to 1473 K. After annealing, the 10Cr2O3–30Fe2O3–60P2O5 (mol%) sample was partially crystallized and contained crystalline β-CrPO4 and Fe3(P2O7)2. The SEM and AFM micrographs of the partially crystallized sample revealed randomly distributed crystals embedded in a homogeneous glass matrix. EDS analysis indicated that the glass matrix was rich in Fe2O3 (39.6 mol%) and P2O5 (54.9 mol%), but contained only 5.5 mol% of Cr2O3. These results suggest that the maximum solubility of chromium in these iron phosphate melts is 5.5 mol% Cr2O3.  相似文献   

6.
The crystal structures of synthetic tourmalines with a unique composition containing 3d elements (Ni, Fe, and Co) have been refined: (Ca0.12?0.88)(Al1.69Ni 0.81 2+ Fe 0.50 2+ )(Al5.40Fe 0.60 3+ )(Si5.82Al0.18O18)(BO3)3(OH)3.25O0.75 I, a = 15.897(5), c = 7.145(2) Å, V = 1564(1) Å; Na0.91(Ni 1.20 2+ Cr 0.96 3+ Al0.63Fe 0.18 2+ Mg0.03)(Al4.26Ni 1.20 2+ Cr 0.48 3+ Ti0.06)(Si5.82Al0.18)O18(BO3)3(OH)3.73O0.27 II, a = 15.945(5), c = 7.208(2) Å, V = 1587(1) Å3 and Na0.35(Al1.80Co 1.20 2+ )(Al5.28Co 0.66 2+ Ti0.06)(Si5.64B0.36)O18(BO3)3(OH)3.81O0.19 III, a = 15.753(8), c = 7.053(3) Å, V = 1516(2) Å3. The reliability factors are R 1 = 0.038?0.057 and wR 2 = 0.041–0.060. It is found that 3d elements occupy both Y- and Z positions in all structures. The excess positive charge is compensated for due to the incorporation of divalent oxygen anions into the O3(V)+O1(W) positions.  相似文献   

7.
K.C. Barick 《Journal of Non》2010,356(3):153-3272
Fabrication of composite materials by in situ generation of γ- and ε-Fe2O3 nanoparticles in a SiO2 matrix through sol-gel process is reported. The process involves the hydrolysis and condensation of 1:3:10:x (x = 0.05, 0.1 and 0.2) molar ratios of tetraethoxysilane, absolute ethanol, nitric acid (0.16 N) and ferric nitrate, respectively, and subsequent thermal-treatment at temperatures ranging from 110 to 1000 °C. The in situ generation and growth of γ- and ε-Fe2O3 nanoparticles, and their distribution in SiO2 matrix strongly depend on the concentration of Fe3+ ions and thermal-treatment temperatures. The restricted growth of Fe2O3 in SiO2 matrix seems to stabilize the metastable ε-Fe2O3 phase and prevent the formation of α-Fe2O3 even at 1000 °C. Further, the presence of Fe2O3 nanoparticles in SiO2 matrix modified the gel morphology on thermal-treatment, leading to strong structural and chemical changes which influence the magnetic properties to a large extent. The concentration of individual magnetic phase (γ- and ε-Fe2O3) in the samples, the particle size and distribution, and thermal-treatment temperature determine the net magnetic moment, shape of the hysteresis loop (symmetric or concentric), coercivity and magnetic phase transition.  相似文献   

8.
The liquidus temperature (TL) and the equilibrium mass fraction of spinel were measured in the regions of low-silica (less than 42 mass% SiO2) high-level waste borosilicate glasses within the spinel primary phase field as functions of glass composition. The components that varied, one at a time, were Al2O3, B2O3, Cr2O3, Fe2O3, Li2O, MnO, Na2O, NiO, SiO2, and ZrO2. In the low-silica region, Cr2O3 increased the TL substantially less, and Li2O and Na2O decreased the TL significantly less than in the region with 42-56 mass% SiO2. The temperature at which the equilibrium mass fraction of spinel was 1 mass% was 25-64 °C below the TL.  相似文献   

9.
The crystal structure of the Na,Ca-amphibole magnesioferrikatophorite found in carbonatites from the Turiy Cape (Kola Peninsula) was refined (Siemens P4 diffractometer, λMoK α radiation, 1481 independent reflections with |F|>4σ(F), anisotropic refinement, R(F) = 0.039). The parameters of the monoclinic unit cell are a = 9.875(5) Å, b = 18.010(8) Å, c = 5.309(3) Å, β = 104.39(5)°, sp. gr. C2/m, Z = 2. The distribution of the cations over the crystallographically nonequivalent M(1–4)-positions was revealed by Mössbauer spectroscopy and X-ray diffraction analysis. The character of splitting of the A-position correlates with the characteristic features of the magnesioferrikatophorite composition. The resulting structural formula (Na0.87K0.13)Σ = 1 · (Na1.18Ca0.82)Σ = 2(Mg1.41Fe 0.42 3+ Ti 0.17 4+ )Σ= 2 Fe 1.31 3+ Mg0.69)Σ = 2(Mg0.60Fe 0.38 2+ Mn0.02)Σ = 1(Si3.16Al0.84)Σ = 4 · Si4O22(O1.05OH0.66F0.29)Σ= 2 agrees well with the electron microprobe analysis data. Based on the zonal character of the crystal and high Fe 3+ content, the conditions of crystallogenesis are defined as oxidative against the background of a decrease in the Na potential in the course of the evolution of a mineral-forming system.  相似文献   

10.
A series of Cr4+:CaMgSiO4 single crystals is grown using floating zone melting, and their microstructure, composition, and crystal structure are investigated. It is shown that regions with inclusions of second phases, such as forsterite, akermanite, MgO, and Ca4Mg2Si3O12, can form over the length of the sample. The composition of the single-phase regions of the single crystals varies from the stoichiometric monticellite CaMgSiO4 to the solid solution Ca(1 ? x)Mg(1 + x)SiO4(x = 0.22). The Cr:(Ca0.88Mg0.12)MgSiO4 crystal is studied using X-ray diffraction. It is revealed that, in this case, the olivine-like orthorhombic crystal lattice is distorted to the monoclinic lattice with the parameters a = 6.3574(5) Å, b = 4.8164(4) Å, c = 11.0387(8) Å, β = 90.30(1)o, Z = 4, V = 337.98 Å3, and space group P21/c. In the monoclinic lattice, the M(1) position of the initial olivine structure is split into two nonequivalent positions with the center of symmetry, which are occupied only by Mg2+ cations with the average length of the Mg-O bond R av = 2.128 Å. The overstoichiometric Mg2+ cations partially replace Ca2+ cations (in the M(2) position of the orthorhombic prastructure) with the average bond length of 2.347 Å in the [(Ca,Mg)-O6] octahedron. The average distance in SiO4 distorted tetrahedra is 1.541 Å.  相似文献   

11.
The literature about gaseous complexes consisting of two different metals and one halide is reviewed. With respect to chemical transport the most important properties of gaseous complexes are their appreciable thermodynamic stability and their volatility. This is clearly illustrated in the case of RbSnCl3, whose vapour in equilibrium with the melt at 980 °K contains around 25 mole% of RbSnCl3 (g) and whose vapour pressure is around 20 times higher than that of RbCl. Gaseous complexes of the type Mn+L2Cln+6 (M = Mg2+, Ca2+, Mn2+, Co2+, Ni2+, Nd3+, Cr3+; L = Fe3+, Al3+) can, in an atmosphere of L2Cl6(g), have vapour pressures up to 107 times higher than the vapour pressure of MCln. The importance of such gaseous complexes for the chemical transport of MCln and of compounds containing Mn+ will be discussed.  相似文献   

12.
The influence of Cr2O3 on glass forming characteristics and physical properties of PbO-Fe2O3-P2O5 glasses has been investigated by Raman and Mössbauer spectroscopies, X-ray diffraction analysis (XRD), Differential Thermal Analysis (DTA), Scanning Electron Microscopy (SEM) and impedance spectroscopy. Glasses of the general composition xCr2O3-(28.3-x)PbO-28.7Fe2O3-43.0P2O5, 0 ≤ × ≤ 10, (mol%) were prepared by conventional melt-quenching technique. The compositions containing up to 4 mol% Cr2O3 formed fully amorphous samples and their Raman spectra show systematic increase in the fraction of orthophosphate Q0 units with increasing Cr2O3 content and O/P ratio.On the other hand, compositions containing 8 and 10 mol% Cr2O3 partially crystallized during cooling and annealing to Fe7(PO4)6, Fe2Pb3(PO4)4 and Cr2Pb3(PO4)4. A high tendency for crystallization of these melts is related to the high O/P (> 4) and Fe2+/Fetot (≈ 0.60) ratios.Electrical conductivity of xCr2O3-(28.3-x)PbO-28.7Fe2O3-43.0P2O5, 0 ≤ × ≤ 10, (mol%) compositions is independent of Cr2O3 and controlled entirely by the polaron transfer between Fe2+ and Fe3+ ions.  相似文献   

13.
New glasses have been prepared in the PbF2MtIIF2MtIIIF3 systems (mtII = Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+; MtIII = Fe3+, V3+, Cr3+, Ga3+). The extent of the vitreous area is shown in a PbF2MnF2FeF3 diagram. Thermal properties have been measured for all samples. Some of these glasses are very transparent over a wide range of wavelengths (from 250–12 000 nm). The sixfold coordination of transition metal ions has been established by spectroscopic investigations. The structure of the glasses is discussed on the basis of a random corner-sharing of MF6 octahedra.  相似文献   

14.
《Journal of Non》2006,352(23-25):2404-2407
Transparent 0.1 at.%Cr,1.0 at.%Nd:YAG (Y3Al5O12) ceramics were fabricated by a solid-state reaction and vacuum sintering with CaO as a charge compensator and tetraethyl orthosilicate (TEOS) as a sintering aid using high-purity powders of Al2O3, Y2O3, Nd2O3 and Cr2O3. The mixed powder compacts were sintered at 1800 °C for 5 h and 30 h under vacuum. The optical transmittance of the Cr,Nd:YAG ceramics sintered at 1800 °C for 5 h and 30 h is ∼63% and ∼78% in the infrared wavelengths, respectively. The two samples exhibit pore-free structures and the average grain size is about 10 and 20 μm. For the sample sintered at 1800 °C for 5 h, the dominant fracture mechanism is the transgranular fracture. With increase of holding time up to 30 h, the ratio of intergranular fracture surfaces increase and more Cr3+ ions in the Cr,Nd:YAG ceramic transform to Cr4+. High-quality Cr4+,Nd3+:YAG transparent ceramics may be a potential self-Q-switched laser material.  相似文献   

15.
Factors controlling the rate at which chromium oxide reaches saturation in Na2O-xSiO2 liquids have been studied as a function of melt composition and oxygen fugacity. Under an oxidizing atmosphere, liquid Na2CrO4 or Cr2O3 crystals can be in equilibrium with soda-silicate melts, depending on the concentration of sodium in the studied system. Under reducing conditions, NaCrSi2O6 is stabilized in silica-rich melts when T is lower than 1160 °C, while Cr2O3 is in equilibrium with the sodium-rich melts when T is above 1160 °C. The chromium oxide (Cr2O3) to pyroxene (NaCrSi2O6) transformation is described in terms of the time required to reach chemical and textural equilibrium. Na2CrO4, NaCrSi2O6, and Cr2O3 phase stability domains are reported as well as the Na2O-SiO2-Cr2O3 phase diagram in the studied temperature and fO2 range.  相似文献   

16.
The crystal structure of a synthetic analog of the mineral lipscombite (Fe 2.3 2+ Fe 4.7 3+ )[PO4]4O2.7(OH)1.3 obtained under hydrothermal conditions in the LiF-Fe2O3-(NH4)2HPO4-H2O system is resolved (R = 0.040) by X-ray diffraction analysis (Bruker Smart diffractometer with a highly sensitive CCD detector, MoK α radiation): a = 14.776(3) Å, b = 14.959(3) Å, c = 7.394(1) Å, β = 119.188(4)°, sp. gr. C2/c, Z = 4, ρexp = 3.8 g/cm3, ρcalcd = 3.9 g/cm3. Fe2+ and Fe3+ cations are statistically distributed in each of four crystallographically independent positions, while occupying the corresponding octahedra with probabilities of 60, 90, 100, and 91%. The ratio Fe2+/Fe3+ in the composition of the crystals was established by Mössbauer spectroscopy. Lipscombite is interpreted as a mineral of variable composition described by the formula (Fe x 2+ Fe n?x 3+ )[PO4]4Oy(OH)4?y . The field of stability is determined as a function of the iron content and the ratio Fe2+/Fe3+. It is shown that at n = 6 iron cations are ordered in octahedra and barbosalite structure is formed. An interpretation of genetically and structurally related members of the lipscombite family within a unified polysomatic series is proposed.  相似文献   

17.
Two novel potassium rare earth silicates, obtained by hydrothermal synthesis, have been investigated by X-ray diffraction and described by the general formula K4 M 2[Al2Si8O24] (M = Ce, Gd). The parameters of the monoclinic K4Ce2[Al2Si8O24] and K4Gd2[Al2Si8O24] cells are, respectively, as follows: a = 26.867(1), 26.6520(2) Å; b = 7.4150(2), 7.2854(1) Å; c = 14.910(1), 14.8182(1) Å; β = 123.52(1)°, 123.46(1)°; and sp. gr. P21/n. The structures are solved by the charge flipping method and refined in the anisotropic approximation of thermal vibrations for atoms to R = 5.2 and 2.5%, respectively. The compounds under study are crystallized into a new structural type, which is based on two-level [Al2Si8O24] layers, combined into a three-dimensional framework by columns of edge-sharing seven-vertex REE polyhedra. Potassium atoms are located in the framework channels. The spectral luminescence characteristics are determined. The luminescence bands are typical of Gd3+ and Ce3+ ions. Upon excitation by light with λ exc = 246 nm, a band due to the 2 D8 F 5/2 transition with λmax = 430 nm is observed in the spectrum of K4Ce2[Al2Si8O24] and a band related to the 6 P 7/28 S 7/2 transition with λmax = 311 nm is observed in the spectrum of K4Gd2[Al2Si8O24].  相似文献   

18.
The freezing point depression of PbO as solvent caused by the trivalent oxides and oxide compounds Fe2O3, Ga2O3, Al2O3, Bi2O3, Y2O3, Gd2O3, La2O3, YFeO3, Fe3O4, Y3Fe5O12, Gd3Ga5O12, and PbFe12O19 allows to determine the number of particles which are formed from these compounds in the diluted solutions. — We have measured the liquidus temperatures of binary mixtures with the help of a DTA-equipment. In this way the cryoscopic constant K̄c = 121 ± 16 K · kg · mole−1 of PbO was determined by addition of ZnO, Cu2O, PbSO4, and PbF2, respectively. The experimental results show that the oxides and oxide compounds dissociate in particles which contain only one cation of the solved compound.  相似文献   

19.
Crystal structures of the compounds Ca9 R(VO4)7 (R = Tb (I), Dy (II), Ho (III), and Y (IV) have been studied by the method of the full-profile analysis. All the compounds are crystallized in the trigonal system (sp. gr. R 3 c, Z = 6) with the unit-cell parameters (I) a = 10.8592(1), c = 38.035(1), V = 3884.2(2) Å3; (II) a = 10.8564(1), c = 38.009(1) Å, V = 3879.6(2) Å3, (III) a = 10.8565(1) and c = 37.995(1) Å, V = 3878.3(2) Å3, and (IV) a = 10.8588(1), c = 37.995(1) Å, V = 3879.9(2) Å3. In structures I–IV, rare earth and calcium cations occupy three positions—M(1), M(2), and M(5). Rare earth cations occupy the R 3+ positions almost in the same way: 2.7–2.6(2) cations in the M(1) position; 2.7–2.3(2) cations in the M(2) position, and 0.6–1.0(1) cation in the M(5) position. At the same time, the occupancy of the M(5) position regularly increases with a decrease of the R 3+ radius.  相似文献   

20.
The pyroxferroite and pyroxmangite from xenoliths of aluminous gneisses in the alkaline basalts of Bellerberg paleovulcano (Eifel, Germany) have been studied by electron-probe and X-ray diffraction methods and IR spectroscopy. The parameters of the triclinic unit cells are found to be a = 6.662(1) Å, b = 7.525(1) Å, c = 15.895(2) Å, α = 91.548(3)°, β = 96.258(3)°, and γ = 94.498(3)° for pyroxferroite and a = 6.661(3) Å, b = 7.513(3) Å, c = 15.877(7) Å, α = 91.870(7)°, β = 96.369(7)°, and γ = 94.724(7)° for pyroxmangite; sp. gr. \(P\overline 1 \). The crystallochemical formulas (Z = 2) are, respectively, M(1–2)(Mn0.5Ca0.4Na0.1)2M(3–6)(Fe, Mn)4M7[Mg0.6(Fe, Mn)0.4][Si7O21] and M(1–3)(Mn, Fe)3M(4–6)[(Fe, Mn)0.7Mg0.3]3M7[Mg0.5(Fe, Mn)0.5][Si7O21]. For these and previously studied representatives of the pyroxmangite structural type, an analysis of the cation distribution over sites indicates wide isomorphism of Mn2+, Fe2+, and Mg in all cation M(1–7) sites and the preferred incorporation of Сa and Na into large seven-vertex M1O7 and M2O7 polyhedra and Mg into the smallest five-vertex M7O5 polyhedron.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号