首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thin films of symmetric diblock copolymers confined between two parallel surfaces have been systematically investigated by means of simulated annealing on a simple cubic lattice. The study was carried out for systems with different film thicknesses and surface-polymer interactions. Very regular equilibrium morphologies of lamella are formed in almost all cases. The dependence of lamellar orientations, total energy, chain-conformation entropy, and free energy of the confined films on the film thickness and the strength of surface-polymer interactions has been studied systematically. The influence of packing frustration on morphology is observed and the mechanisms of lamellar orientations are investigated.  相似文献   

2.
We demonstrate a general approach for attaining the bottom morphology of block copolymer(BCP) thin films. In our former measurements on PS-b-PMMA films, surface morphology maps of the BCP films revealed distinct ordering regimes where the cylinders orient predominantly perpendicular or parallel to the interface and an ‘intermediate' regime where these morphologies coexist. However, this earlier work did not explore the bottom morphology of BCP thin films. In this study, we investigated the block copolymer morphology near the solid substrate in the cast block copolymer film having a perpendicular cylinder morphology on the surface.  相似文献   

3.
We report a new approach toward preparing self-assembled hydrogen-bonded complexes having vesicle and patched spherical structures from two species of block copolymers in nonselective solvents. Two diblock copolymers, poly(styrene-b-vinyl phenol) (PS-b-PVPh) and poly(methyl methacrylate-b-4-vinylpyridine) (PMMA-b-P4VP), were synthesized through anionic polymerization. The assembly of vesicles from the intermolecular complex formed after mixing PS-b-PVPH with PMMA-b-P4VP in THF was driven by strong hydrogen bonding between the complementary binding sites on the PVPH and P4VP blocks. In contrast, well-defined patched spherical micelles formed after blending PS-b-PVPh with PMMA-b-P4VP in DMF: the weaker hydrogen bonds formed between the PVPh and P4VP blocks in DMF, relative to those in THF, resulted in the formation of spherical micelles having compartmentalized coronas consisting of PS and PMMA blocks.  相似文献   

4.
Amphiphilic diblock copolymers have the ability to adapt their surface's molecular composition to the hydrophilicity of their environment. In the case of about equal volume fractions of the two polymer blocks, the bulk of these polymers is known to develop a laminar ordering. We report here our investigation of the relationship between bulk ordering and surface morphology/chemical composition in thin films of such an amphiphilic diblock copolymer. Upon annealing in vacuum, the expected lamella ordering in the bulk of the film is observed and we find the morphology of the film surface to be defined by the thickness of the as‐deposited film: If the as‐deposited thickness matches the height of a lamella stack, then the film exhibits a smooth surface. Otherwise, an incomplete lamella forms at the film surface. We show that the coverage of this incomplete layer can be quantified by X‐ray reflectivity. To establish the lamella ordering in the bulk, the film needs to be annealed above the glass temperature of the two blocks. Molecular segregation at the film surface, however, is already occurring at temperatures well below the glass temperature of the two blocks. This indicates that below the glass temperature of the blocks the bulk of the thin film is “frozen,” whereas the polymer chains composing the surface lamella have an increased mobility. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys., 2013 , 51, 1282–1287  相似文献   

5.
Microphase separation and the resulting morphology of asymmetric diblock copolymers of poly(ε-caprolactone) (PCL) in thin films have been investigated by atomic force microscopy. Copolymers consisted of a short block of PCL (Mn∼2500-4500 g/mole) and a longer second block of poly(methyl methacrylate) (PMMA), poly(styrene) (PS) or poly(cyclohexene oxide) (PCHO). Tendency for microphase separation above the glass transition temperature of the second block (PMMA, PS or PCHO) resulted in a pitted morphology on the surface of the thin films. This tendency was strongest for PMMA and weakest for PCHO. The presence of up to 54% PMMA homopolymer in PCL-PMMA block copolymer did not prevent the formation of such pitted morphology on the surface. The effect of the chemical structure of the second block and the possible orientations of the block copolymer molecules in thin films are discussed.  相似文献   

6.
We report the self‐consistent field theory (SCFT) of the morphology of lamella‐forming diblock copolymer thin films confined in two horizontal symmetrical/asymmetrical surfaces. The morphological dependences of thin films on the polymer‐surface interactions and confinement, such as film thickness and confinement spatial structure, have been systematically investigated. Mechanisms of the morphological transitions can be understood mainly through the polymer‐surface interactions and confinement entropy, in which the plat confinement surface provides a surface‐induced effect. The confinement is expressed in the form of the ratio D/L0, here D is film thickness, and L0 is the period of bulk lamellar‐structure. Much richer morphologies and multiple surface‐induced morphological transitions for the lamella‐forming diblock copolymer thin films are observed, which have not been reported before. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1–10, 2009  相似文献   

7.
We have measured the time evolution of the self‐assembly process in perpendicular‐oriented cylindrical‐phase diblock copolymer thin films using statistical analysis of high‐resolution scanning electron microscope (SEM) images. Within minutes of annealing above the polymer glass‐transition temperature, microphase separation between polymer blocks results in formation of uniform nanometer‐scale domains whose relative position is initially largely uncorrelated. On further annealing, the cylindrical polymer domains organize into a two‐dimensional hexagonal lattice whose characteristic grain size increases slowly with time (~t1/4). © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1970–1975, 2004  相似文献   

8.
In the preparation of the ABC star triblock copolymer of ethylene oxide, styrene and methyl methacrylate (MMA), the photo-induced charge-transfer complex (CTC) was used to initiate the polymerization of the third monomer MMA. The CTC was composed of the diblock copolymer of poly(ethylene oxide) (PEO) and polystyrene (PS), PEO-b i -PS, with an aromatic imino group at the conjunction point and benzophenone (BP). It was confirmed that the kinetic behavior of this macromolecular initiation system is nearly the same with a general small radical initiator: the polymerization rate R p ∝ [PEO-b i -PS]0.48[BP]0.45[MMA]0.97. Moreover, if the molecular weight of the PEO block is fixed, R p is independent of the molecular weight of the PS block.  By means of measurements of viscosity and fluorescence, it was found that the micelles of the diblock copolymer PEO-b i -PS were formed in benzene. The aromatic imino groups were located on the boundary surfaces of the micelles and were fully exposed, and so the BP and MMA molecules easily approached them and affected the charge-transfer polymerization of MMA. Received: 18 August 1998 Accepted in revised form: 25 November 1998  相似文献   

9.
Lamellae forming diblock copolymer domains can be directed to assemble without defects and in registration with chemically nanopatterned substrates. Initially, thin films of the lamellar poly(styrene-b-methyl methacrylate) block copolymer form hexagonally close-packed styrene domains when annealed on chemical nanopatterned striped surfaces. These styrene domains then coalesce to form linear styrene domains that are not fully registered with the underlying chemical surface pattern. Defects coarsen, until defect-free directed assembly is obtained, by breaking linear styrene domains and reforming new structures until registered lamellae have been formed. At all stages in the process, two factors play an important role in the observed degree of registration of the block copolymer domains as a function of annealing time: the interfacial energy between the blocks of the copolymer and the chemically nanopatterned substrate and the commensurability of the bulk repeat period of the block copolymer and the substrate pattern period. Insight into the time-dependent three-dimensional behavior of the block copolymer structures is gained from single chain in mean field simulations. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3444–3459, 2005  相似文献   

10.
The dynamics of alignment of microstructure in confined films of diblock copolymer melts in the presence of an external electric field was studied numerically. We consider in detail a symmetric diblock copolymer melt, exhibiting a lamellar morphology. The method used is a dynamic mean-field density functional method, derived from the generalized time-dependent Ginzburg-Landau theory. The time evolution of concentration variables and therefore the alignment kinetics of the morphologies are described by a set of stochastic equations of a diffusion form with Gaussian noise. We investigated the effect of an electric field on block copolymers under the assumption that the long-range dipolar interaction induced by the fluctuations of composition pattern is a dominant mechanism of electric-field-induced domain alignment. The interactions with bounding electrode surfaces were taken into account as short-range interactions resulting in an additional term in the free energy of the sample. This term contributes only in the vicinity of the surfaces. The surfaces and the electric field compete with each other and align the microstructure in perpendicular directions. Depending on the ratio between electric field and interfacial interactions, parallel or perpendicular lamellar orientations were observed. The time scale of the electric-field-induced alignment is much larger than the time scale of the surface-induced alignment and microphase separation.  相似文献   

11.
A new fluorinated macroinitiator of poly 2,2,3,4,4,4-hexafluorobutyl methacrylate-Br (PHFMA-Br) was prepared via activator generated by electron transfer atom transfer radical polymerization (AGET ATRP), and then a series of fluorinated block copolymers with different fluorine content were successfully synthesized from the macroinitiator by the second step AGET ATRP. GPC, FTIR and 1H NMR data obtained verified the synthesis. Contact angle measurement indicated that proper fluorine content could decrease the surface energy and increase the contact angle of the copolymer films. XPS characterization showed that the large difference in surface energy between the block and random copolymer film resulted from the difference of the fluorine content on the surface, although the fluorine content of the two copolymers in bulk was similar. The self-assembly behavior of the fluorinated block copolymer in selective solvents was evaluated by the TEM study, and the stable micelles with a core-shell structure were observed when the copolymer content was about 1 wt%.  相似文献   

12.
We study the guided self-assembly of symmetric/asymmetric diblock copolymer (BCP) films on heterogeneous substrates with chemically patterned surface by using a coarse-grained phase-separation model. During the procedure, the free energy employed for the BCP films was modeled by the Ginzburg-Landau free energy with nonlocal interaction, and the flat, chemically patterned surface was considered as a heterogeneous surface with short-range interaction with the BCP molecules. The resulting Cahn-Hilliard equation was solved by means of an efficient semi-implicit Fourier-spectral algorithm. Effects of pattern scale, surface chemical potential, and BCP asymmetry on the self-assembly process were explored in detail and compared with those without chemically patterned substrate surfaces. It was found that the morphology of both symmetric and asymmetric BCP films is strongly influenced by the commensurability between the unconstrained natural period lambda* of the bulk BCP and the artificial pattern period. Simulation shows that patterned surface with period close to lambda* leads to highly ordered morphology after self-assembly for both symmetric and asymmetric BCP films, and it also dramatically accelerates the guided self-assembly process. The present simulation is in a very good agreement with the recent experimental observation in BCP nanolithography. Finally, the present study also expects an innovative nanomanufacturing method to produce highly ordered nanodots based on the guided self-assembly of asymmetric BCP films on chemically patterned substrates.  相似文献   

13.
The self-diffusion of a polystyrene-b-poly(ethylene-co-propylene) diblock copolymer dissolved in a preferential solvent for the aliphatic block, n-decane, was investigated by pulsed field gradient NMR. The diblock copolymer forms micelles in solution, the structure of the solid polymer being preserved in the native solution because the polystyrene is in the glassy state. The equilibrium state is attained upon heating which again freezes in upon cooling to room temperature. The hydrodynamic radius of the micelles decreases by about 50% during this heating–cooling process. The concentration dependence of the self-diffusivity shows typical colloidlike behaviour, and it can be described by a Vogel–Fulcher–Tammann-like equation. No indications of crystallization at higher concentrations are observed in the micellar solution because the micellar sizes are slightly polydisperse. The self-diffusivity was measured up to the glasslike state, where in-cage- diffusion and dynamic heterogeneities could be detected. Received: 14 April 1999 Accepted in revised form: 14 June 1999  相似文献   

14.
We explore the effect of temperature-induced morphological changes in insulating diblock copolymer system (DBC) filled with conductive fillers on the conductivity of this composite. By making use of the developed method that relies on the consistent phase-field model of DBC, Monte-Carlo simulations of the filler distribution in DBC, and resistor network model, we quantitatively relate the morphology of filled DBC and its conductivity. In particular, we demonstrate that the order–disorder transition between the random and ordered microphases of DBC causes the conductor-insulator transition in the network of conductive fillers immersed in this system. The order–order transition between the ordered lamellae and cylindrical microphases of DBC is found to co-occur with a jump in the composite conductivity caused by restructuring of the conductive filler network.  相似文献   

15.
The time evolution of the free surface of asymmetric diblock copolymers of polystyrene and poly(methyl methacrylate) on a strongly interacting surface was studied with atomic force microscopy. The surface morphology underwent morphological transitions to satisfy commensurability conditions. These transformations were consistent with recent self‐consistent field arguments predicting the phase transitions of copolymers as a function of thickness (see M. J. Fasolka, P. Banerjee, A. M. Mayes, G. Pickett, & A. C. Balazs, Macromolecules 2000, 33, 5702). © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 663–668, 2001  相似文献   

16.
The fabrication of nanoporous templates from poly(styrene)-b-poly(methyl methacrylate) diblock copolymer thin films (PS-b-PMMA, volume ratio 70:30) on silicon requires precise control of interfacial energies to achieve a perpendicular orientation of the PMMA cylindrical microdomains relative to the substrate. To provide a simple, rapid, yet tunable approach for surface neutralization, we investigated the self-assembled ordering of PS-b-PMMA diblock copolymer thin films on silicon substrates modified with a partial monolayer of octadecyldimethyl chlorosilane (ODMS), i.e., a layer of ODMS with a grafting density less than the maximum possible monolayer surface coverage. We demonstrate herein the fabrication of nanoporous PS templates from annealed PS-b-PMMA diblock copolymer thin films on these partial ODMS SAMs.  相似文献   

17.
Liu H  Shi R  Wan W  Yang R  Wang Y 《Electrophoresis》2008,29(13):2812-2819
A series of well-defined diblock copolymers, poly(ethylene oxide)-block-poly(4-vinylpyridine) (PEO-b-P4VP) used as physical coating of capillaries, were synthesized by atom transfer radical polymerization (ATRP). EOF measurement results showed that all synthesized PEO-b-P4VP diblock copolymer-coated capillaries in this report could suppress EOF effectively compared to the bare fused-silica capillaries, and efficient separations of basic proteins were achieved. The effects of the molecular weight of P4VP block in PEO-b-P4VP and buffer pH on the separation of basic proteins for CE were investigated in detail. Moreover, the relationships between morphologies of PEO-b-P4VP diblock copolymers in buffer, which were studied by transmission electron microscopy, and the separation efficiencies of basic protein with PEO-b-P4VP diblock copolymers coatings were discussed.  相似文献   

18.
Oxide nanoparticles arrays are easily synthesized in a 3-steps method including (i) the deposition of poly(styrene)-b-poly(4-vinylpyridine) (PS-b-PVP) thin films, (ii) the selective deposition of inorganic precursors and (iii) the synthesis of oxide nanoparticles and the elimination of the polymer scaffold by thermal annealing. The specific staining of the PVP domains by inorganic precursors is obtained in this study thanks to a simple and fast spin coating process using an alcoholic solution of the precursors. This simple lab-procedure is used to synthesize a wide range of metallic (silicon, titanium, cerium, ruthenium, zinc and manganese) oxides, showing that this method can be extended to the synthesis of all kinds of oxides with all kinds of precursors as long as the precursor is soluble in P4VP solvent. It is shown that this strategy can be extended to the synthesis of oxide nanorods.  相似文献   

19.
Pb0.4Sr0.6TiO3 (PST) thin films doped with various concentration of Bi were prepared by a sol-gel method. The phase status, surface morphology and dielectric properties of these thin films were measured by X-ray diffraction (XRD), scanning electron microscopy (SEM) and impedance analyzer, respectively. Results showed that the thin films with the maximum dielectric constant and minimum dielectric loss were obtained for x=0.15. For x<0.15, only pure PST perovskite phase were in the thin films. For 0.2<x<0.4, the PST/Bi2Ti2O7 biphase were obtained. The thin films with pure Bi2Ti2O7 pyrochlore phase were obtained for x=0.67. The biphase thin films had high tunability and high figure of merit (FOM). The FOM of PST/Bi2Ti2O7 biphase thin film was about 6 times higher than that thin films formed with pure perovskite phase or pure pyrochlore phase.  相似文献   

20.
Surface‐pattern formation in thin block copolymer films was investigated by utilizing a high‐throughput methodology to validate the combinatorial measurement approach and to demonstrate the value of the combinatorial method for scientific investigation. We constructed measurement libraries from images of subregions of block copolymer films having gradients in film thickness and a range of molecular mass, M. A single gradient film covers a wide range of film morphologies and contains information equivalent to a large number of measurements of films having a fixed thickness, h. Notably, the scale of the surface patterns is generally much larger than the molecular dimensions so that the interpretation of the patterns is more subtle than ordering in bulk block copolymer materials, and there is no predictive theory of this type of surface‐pattern formation. We observed a succession of surface patterns that repeat across the film with increasing h [extended smooth regions, regions containing circular islands, labyrinthine (“spinodal”) patterns, holes, and smooth regions again]. The extended smooth regions and the labyrinthine patterns appear to be novel features revealed by our combinatorial study, and these patterns occurred as bands of h that were quantized by integral multiples of the bulk lamellar period, Lo. The magnitude of the height gradient influenced the width of the bands, and the smooth regions occupied an increasing fraction of the film‐surface area with an increasing film gradient. The average size of the spinodal patterns, λ, was found to scale as λ ~ L or λ ~ M?1.65 and reached a limiting size at long annealing times. The hole and island features had a size comparable to λ, and their size likewise decreased with increasing M. The smooth regions were attributed to an increase in the surface‐chain density in the outer brushlike block copolymer layer with increasing h, and the scaling of λ with M was interpreted in terms of the increasing surface elasticity with M. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2141–2158, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号