首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Role of the smallest diffusive scales of a passive scalar field in the near-wall turbulent flow was examined with pseudo-spectral numerical simulations. Temperature fields were analyzed at friction Reynolds number Re τ=171 and at Prandtl numbers, Pr=1 and Pr=5.4. Results of direct numerical simulations (DNS) were compared with the under-resolved simulations where the velocity field was still resolved with the DNS accuracy, while a coarser grid was used to describe the temperature fields. Since the smallest temperature scales remained unresolved in these simulations, an appropriate spectral turbulent thermal diffusivity was applied to avoid pile-up at the higher wave numbers. In spite of coarser numerical grids, the temperature fields are still highly correlated with the DNS results, including instantaneous temperature fields. Results point to practically negligible role of the diffusive temperature scales on the macroscopic behavior of the turbulent heat transfer.  相似文献   

2.
Size effects in strength and fracture energy of heterogeneous materials is considered within a context of scale-dependent constitutive relations. Using tools of wavelet analysis, and considering the failure state of a one-dimensional solid, constitutive relations which include scale as a parameter are derived from a ‘background’ gradient formulation. In the resulting theory, scale is not a fixed quantity independent of deformation, but rather directly dependent on the global deformation field. It is shown that strength or peak nominal stress (maximum point at the engineering stress–strain diagram) decreases with specimen size while toughness or total work to fracture per nominal area (area under the curve in the engineering stress–strain diagram integrated along the length of the considered one-dimensional specimen) increases. This behavior is in agreement with relevant experimental findings on heterogeneous materials where the overall mechanical response is determined by variations in local material properties. The scale-dependent constitutive relations are calibrated from experimental data on concrete specimens.  相似文献   

3.
In this paper I review a coarse-grained fluid theory named the finite scale theory and describe the development of its numerical analog, implicit large eddy simulation (ILES). The derivation, interpretation and properties of the finite scale equations are discussed and connections to other physical theory and numerical methods are elucidated.  相似文献   

4.
Soil moisture is a key terrain variable in ground vehicle off-road mobility. Historically, models of the land water balance have been used to estimate soil moisture. Recently, satellites have provided another source of soil moisture estimates that can be used to estimate soil-limited vehicle mobility. In this study, we compared the off-road vehicle mobility estimates based on three soil moisture sources: WindSat (a satellite source), LIS (a computer model source), and in situ ground sensors (to represent ground truth). Mobility of six vehicles, each with different ranges of sensitivity to soil moisture, was examined in three test sites. The results demonstrated that the effect of the soil moisture error on mobility predictions is complex and may produce very significant errors in off-road mobility analysis for certain combinations of vehicles, seasons, and climates. This is because soil moisture biases vary in both direction and magnitude with season and location. Furthermore, vehicles are sensitive to different ranges of soil moistures. Modeled vehicle speeds in the dry time periods were limited by the interaction between soil traction and the vehicles’ powertrain characteristics. In the wet season, differences in soil strength resulted in more significant differences in mobility predictions.  相似文献   

5.
The influence of probe resolution on the statistical measurement of a passive scalar is reported. A spectral method is employed to simulate degradation of the spatial resolution of a probe on the measured variances of a fluctuating scalar and its streamwise derivative by low-pass filtering a time-series of data at different cutoff frequencies. Direct measurements are also employed by varying probe sensor separation. The far field of a circular jet and the near wake of a circular cylinder are both investigated using air as the working fluid. The use of this low-Schmidt number working fluid and relatively low turbulence Reynolds numbers allows for good resolution of small scales of scalar fluctuations. By comparison, the same level of resolution is much more difficult to achieve when utilising a high-Schmidt number working fluid. A small temperature differential above ambient is used to mark the passive scalar, which is measured using a cold-wire anemometer. Taylor's hypothesis is employed to determine length scales. The present results are in good agreement with previous direct measurements using both optical techniques and cold-wire probes. It is found that the spatial resolution required for accurate measurement of the scalar dissipation rate is well described by the characteristic smallest scale of the scalar fluctuation, i.e. 'the Batchelor scale'. However, an order of magnitude less resolution is required for the scalar variance. The effect of degrading resolution on the variance measurements is more significant in the near wake than the far-field jet, suggesting that these requirements may be flow-dependent.  相似文献   

6.
Richtmyer–Meshkov (RM) instability arises during the eruption of heavy gas cloud. In this study, we numerically study the effects of magnetic fields on the RM instability induced by the ionised cylindrical and spherical heavy gas cloud eruption using corner transport upwind + constrained transport algorithm. Our numerical results show that magnetic fields can suppress the formation of spike and bubble structures induced by the eruption in both cylindrical and spherical cases. The magnetic pressure of the interface along the perpendicular direction of magnetic field is the main factor to control the distortion of the interface. Even weak magnetic fields can drastically alter the evolution of the cloud and result in different distributions and amplifications of the magnetic pressure, which will affect further transformation of RM instability during the ionised gas eruption. Meanwhile, the magnetic pressure on the interface decreases gradually when the initial magnetic field is relatively large; when the initial magnetic field is small enough, the opposite results will occur.  相似文献   

7.
针对穿越采空区埋地管道的动态力学预测问题,本文在概率积分法基础上将煤矿开采距离定义为开采时间与开采速度的乘积,采用分段Knothe函数模型并使用叠加原理,建立了在管-土协同变形期间水平煤层及缓倾斜煤层下埋地管道的动态下沉模型;在此基础上,运用弹性地基梁模型求解管道的挠度并结合分段Knothe函数建立了管道动态力学预测模...  相似文献   

8.
9.
The example of two non-stationary forces is used to study the impact of external influences leading to the occurrence of additional ponderomotive forces on the wave regimes of the film freely flowing down a vertical surface. The first case describes a ferromagnetic fluid film affected by the magnetic field, and the second case touches upon a dielectric fluid film affected by the electric field. For the given forces, in the case of small flow rates, the problem is reduced to the solution of a model equation for the perturbation of the film thickness. The numerical solutions of the problem are obtained, and several characteristic scenarios of evolution of periodical perturbations are considered. It is shown that changes in the boundaries of the region of linear stability of the unperturbed flow with a flat free surface under the influence of ponderomotive forces have a great impact on the flow.  相似文献   

10.
孙绪绪  郭进  陆守香 《爆炸与冲击》2021,41(5):055401-1-055401-7
对常温常压下柴油舱组集中透气管中柴油蒸汽的燃爆危险性以及阻隔防爆技术的抑爆效能开展了实验研究。利用nac HX-3高速相机和CY-YD-205压力传感器记录燃爆传播过程和爆炸超压,阻隔防爆装置分别采用新型抑爆小球和普通波纹型阻火器。结果表明:常温常压下,一旦柴油油舱发生爆炸,爆炸火球可以通过透气管传播到相邻油舱,并引起二次爆炸,具有较大的危险性;普通波纹型阻火器在爆炸过程中阻火失效,而新型抑爆小球具有较好的抑爆效果;相对于光滑透气管工况,在点火舱上方安装抑爆小球后,被点火舱内的最大爆炸超压可以显著地从552.5 kPa降低到35.0 kPa;抑爆小球的中空多孔结构是其阻隔防爆的关键,多孔结构不仅可以增大比表面积、扩大热损失,而且还可以有效地分割削弱反应面。  相似文献   

11.
1998年长江流域的特大洪水灾害表明,目前长江流域防洪体系在面临特大洪水时仍然显得比较脆弱.以长江中下游荆江洞庭湖地区为背景,运用有限体积计算方法建立了一维河道和二维湖泊交错的复杂水系洪水演进数值模型,细致分析了由于分流河道淤积以及洞庭湖萎缩对长江洪灾的影响.得出长江分流河道和洞庭湖由于泥沙淤积产生的萎缩将造成长江干流河道洪水期间水位抬升,从而加重长江的洪水灾害.其结论可为长江中下游地区的洪水治理提出建设性意见.  相似文献   

12.
A two-fluid model with zero slip between the phases but which allows for unequal phase temperatures, changing interfacial area and the effect of heterogeneous nucleation has been used to evaluate the initial depressurization of a subcooled or saturated light. The results compare favourably with existing water and dichlorodifluoromethane experiments and suggest that the algorithm, in association with well-tabulated data, could be used to evaluate the heterogeneous nucleation factor.  相似文献   

13.
14.
千米级斜拉桥施工过程中主梁的预转折角研究   总被引:3,自引:0,他引:3  
斜拉桥安装、张拉、起拱等系统的施工金过程分析和控制技术是一项涉及斜拉桥质量和安全的关键技术问题。本文以某千米级斜拉桥为例,采用一阶最优化计算方法来确定斜拉桥的合理施工状态。以成桥后主梁的线形为目标函数,施工中主梁节段的预转折角为设计变量,建立了斜拉桥施工控制的空间非线性有限元分析模型,模拟了钢箱主梁的悬臂拼装过程,求出各施工阶段节段的预转折角。  相似文献   

15.
近年来,壁面滑移在纳米流变学、微流体力学、薄模润滑和微机电系统(MEMS)等领域越来越引起关注。以前大部分研究集中于表面初始极限剪应力对薄模润滑的壁面滑移和流体动力学的影响。本文通过一个极限剪切应力比例系数主要研究了与压力相关的壁面滑移滑动间隙流体动压力产生中的作用,发现极限剪切应力比例系数以相反的两种方式影响着流体膜的流体动力学:在高初始剪应力区使流体动力增加,但在低初始剪应力区使流体动力减小,这意味着就极限剪切应力比例系数影响流体动压力而言,存在一个初始极限剪切应力的转换点。但是在界面滑移存在时,较小的极限剪切应力比例系数总是产生较小的摩擦阻力。  相似文献   

16.
This paper presents a numerical prediction of the formation of Goertler vortices on a concave surface with suction and blowing. Suction stabilizes the boundary layer flow on the surface, whereas blowing destabilizes the flow. The criterion on the position marking the onset of Goertler vortices is defined in the present paper. For facilitating the numerical study, the computation is carried out in the transformed x–η plane. The results show that the onset position characterized by the Goertler number depends on the local suction/blowing parameter, the Prandtl number and the wavenumber. The value of the critical Goertler number increases with the increase in suction, while the value of the Goertler number decreases with the increase in blowing. Both the experimental and the numerical data can be correlated by Gθ*=10.2(a′θ)*3/2 without suction and blowing and by a simple relation G*x=(G*x)γ=0 e−γ with suction and blowing. The obtained critical Goertler number and wavenumber are in good agreement with the previous experimental data. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

17.
18.
Asymptotic solutions are presented for a stationary crack normal to the boundary between two elastically mismatched solids such that the crack tip is located at the interface. The second-order term in the elastic asymptotic expansion was determined as a function of elastic mismatch for a thin cracked film on a substrate and for a thin cracked lamina between two substrates. Elastic-plastic analysis was performed using both modified boundary layer formulations and full field analyses. Analytic and numerical solutions in small strain yielding identify elastic mismatch and the T-stress as the determinants of crack tip constraint. The effect of constraint on the competition between interface failure and penetration is discussed.  相似文献   

19.
The paper presents a review of the experimental results, mathematical models and numerical investigations of wave processes and the dynamics of liquid media under impulse loading. The presence of micro-inhomogeneities can change substantially the state of the liquid, the structure of the applied wave field and the mechanisms of the physical processes that take place in the liquid. Some crucial research trends received proper attention: the cavitation fracture of liquid under explosive loading, different methods of describing the mechanisms of pressurized-liquid tank explosions, the effects of bubble cavitation and inhomogeneities on the sensitivity of high explosives (HE) to the initiation and propagation of detonation, the problem of focusing the shock waves, and destruction of stones in lithotriptors. Received 10 August 1995 / Accepted 18 June 1996  相似文献   

20.
A deformation-theory version of strain-gradient plasticity is employed to assess the influence of microstructural scale on the yield strength of composites and polycrystals. The framework is that recently employed by Fleck and Willis (J. Mech. Phys. Solids 52 (2004) 1855-1888), but it is enhanced by the introduction of an interfacial “energy” that penalises the build-up of plastic strain at interfaces. The most notable features of the new interfacial potential are: (a) internal surfaces are treated as surfaces of discontinuity and (b) the scale-dependent enhancement of the overall yield strength is no longer limited by the “Taylor” or “Voigt” upper bound. The variational structure associated with the theory is developed in generality and its implications are demonstrated through consideration of simple one-dimensional examples. Results are presented for a single-phase medium containing interfaces distributed either periodically or randomly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号