首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
我们以商业预还原的维氏体(Fe1-xO)氨合成催化剂为载体,采用Fe(NO)3 ·9H2O和H2C2O4·2H2O进行原位室温固相反应制备纳米铁或微米铁修饰的铁基氨合成催化剂,并通过XRD、SEM、TG-DTG、H2-TPR等进行了表征.结果表明:Fe(NO)3·9H2O和H2C2O4·2H2O室温固相反应完全生成产物Fe2(C2O4)3·5H2O,且产物分散于载体维氏体催化剂表面.通过纳米铁-微米铁的修饰,催化剂的氨合成活性有很大提高且稳定性好.催化剂活性随着Fe负载量的增加先增加后降低,负载量5%时催化活性最好,反应器出口氨浓由450℃(12.4%)、425℃(11.0%)、400℃(9.4%)分别提升至450℃(15.6%)、425℃(14.8%)、400℃(13%).通过一步简单的修饰,维氏体催化剂的氨合成活性提高约25% ~38%.由于焙烧和还原,生成的Fe1xO或铁粒子与铁催化剂表面发生强相互作用,因此,反应过程中纳米铁或微米铁粒子能稳定存在,催化剂有较高的稳定性.  相似文献   

2.
我们以商业预还原的维氏体(Fe_(1-x)O)氨合成催化剂为载体,采用Fe(NO)_3·9H_2O和H_2C_2O_4·2H_2O进行原位室温固相反应制备纳米铁或微米铁修饰的铁基氨合成催化剂,并通过XRD、SEM、TG-DTG、H_2-TPR等进行了表征.结果表明:Fe(NO)_3·9H_2O和H_2C_2O_4·2H_2O室温固相反应完全生成产物Fe_2(C_2O_4)_3·5H_2O,且产物分散于载体维氏体催化剂表面.通过纳米铁-微米铁的修饰,催化剂的氨合成活性有很大提高且稳定性好.催化剂活性随着Fe负载量的增加先增加后降低,负载量5%时催化活性最好,反应器出口氨浓由450℃(12.4%)、425℃(11.0%)、400℃(9.4%)分别提升至450℃(15.6%)、425℃(14.8%)、400℃(13%).通过一步简单的修饰,维氏体催化剂的氨合成活性提高约25%~38%.由于焙烧和还原,生成的Fe_(1-x)O或铁粒子与铁催化剂表面发生强相互作用,因此,反应过程中纳米铁或微米铁粒子能稳定存在,催化剂有较高的稳定性.  相似文献   

3.
以浸渍法制备的Fe2O3/γ-Al2O3为载体,采用均相沉积沉淀方法制备了Au/Fe2O3/Al2O3催化剂.该催化剂在丙烯选择催化还原NO反应中显示出很好的低温催化活性,300℃时NO被选择还原为N2的转化率可达43%,而在Au/Al2O3催化剂上,NO的转化率仅为21%.水蒸气的加入对催化剂活性的影响较小.X射线衍射结果表明,Au和Fe2O3高度分散在Al2O3载体上.吸附氢气的程序升温还原结果表明,Au与Fe2O3之间存在着强相互作用,Au的存在促进了Fe2O3的还原,Au和Fe2O3之间的协同作用可能是Au/Fe2O3/Al2O3催化剂在丙烯选择还原NO反应中具有较高低温催化活性的原因之一.  相似文献   

4.
 在室温条件下,通过溶胶-凝胶法制备了新的纳米氧化铁载体. X射线衍射、差热-热重分析、扫描电子显微镜和N2物理吸附等测试结果表明,制得的Fe2O3粉体具有典型的介孔结构,孔径范围18.8~25.0 nm, 晶相组分由原料配比和制备条件决定. 进一步通过浸渍法制备了高活性的Ru-K/Fe2O3氨合成催化剂. 在475 ℃, 10 MPa, 10000 h-1和V(H2)/V(N2)=3的条件下,考察了负载型Ru-K/Fe2O3催化剂的活性. 结果表明,载体中γ-Fe2O3的含量越高,其氨合成活性越好.  相似文献   

5.
采用等体积浸渍法制备了一系列催化剂用于甲烷氮气常压合成氨反应.对Si O2、γ-Al2O3、煤质柱状炭、椰壳活性炭为载体的Fe基催化剂的活性评价结果显示椰壳炭载体最优;通过对Zr、Ce、K等多种助剂的筛选,发现K促进的Fe基催化剂氨生成速率最高.利用XRD、SEM、BET等手段对载体和催化剂进行表征,结果表明椰壳炭具有规则孔道且孔容增大,催化剂还原后有新晶相KFe O2生成.最后在固定床微分反应器中,考察了常压合成氨催化剂的负载顺序及最优工况.结果表明,在常压700℃、VCH4/VN2=2/1、空速为2 800 m L/h时,催化剂3%K-5%Fe/椰壳炭的氨生成速率最高可达1.04×10-6mol·g-1·s-1,是现有文献值的83.5倍,将具有深远的工业应用前景.  相似文献   

6.
采用浸渍法制备了系列不同Fe2O3、ZnO负载量的Fe2O3-ZnO/SiO2催化剂,并用XRD、BET、SEM等对催化剂进行了表征;考察了以分子氧为氧化剂时,该系列催化剂对异戊醇一步合成异戊酸异戊酯的催化性能,并初步探讨了其反应机理。结果表明,在Fe2O3/SiO2催化剂上引入适量ZnO后,提高了Fe2O3在SiO2上的分散度,减小了Fe2O3的粒径,所制得的Fe2O3-ZnO/SiO2催化剂有较大的比表面积、孔体积、孔径,催化性能优于Fe2O3/SiO2。其中,在Fe2O3与ZnO的协同作用下,6%Fe2O3-4%ZnO/SiO2催化性能最佳,常压下当催化剂用量为0.9 g(占反应物质量的3.5%),反应温度120℃,反应时间9 h,异戊醇一步合成异戊酸异戊酯的选择性达54.5%,收率达31.4%。对该合成机理的初步探讨表明,只有催化剂与分子氧的共同作用下,异戊醇才能高效的合成异戊酸异戊酯。  相似文献   

7.
采用La2(CO3)3空气焙烧法制备了La2O2CO3载体、采用浸渍法制备了Ni,Fe不同比例的Ni-Fe双金属催化剂及Ni/La2O2CO3,Fe/La2 O2 CO3催化剂,考察了各催化剂从300~700℃催化乙醇水蒸气重整反应的性能,并用BET,XRD,TPR等技术对催化剂进行表征。结果表明,相对单一金属催化剂,Ni-Fe双金属催化剂均表现出更高的活性,这可能是因为高分散的Ni,Fe和LaFeyNi1-yO3的共存作用。其中Ni含量为10%,Fe含量为5%时的Ni-Fe/La2O2CO3表现出最高的活性,400℃时乙醇的转化率为100%,H2的选择性最高达到94.1%,而CO的选择性则低至1.2%。  相似文献   

8.
Fe2O3/YSZ-γ-Al2O3催化剂在甲烷催化燃烧中的催化性能研究   总被引:9,自引:0,他引:9  
以Fe2O3为活性组分,γ-Al2O3,ZrO2-γ—Al2O3及YSZ—γ—Al2O3(YSZ是用Y2O3稳定ZrO2的催化剂载体)为载体,制备了3种甲烷燃烧催化剂.其中以YSZ—γ—Al2O3为载体的催化剂催化性能最好.XPS检测发现.ZrO2和Y2O3的存在可以增加和稳定Fe2O3的表面浓度,同时也可减弱Fe2O3与γ—Al2O3之间的相互作用.Fe2O3质量分数为10%的Fe2O3/YSZ—γ—Al2O3催化剂具有最佳的催化活性.XRD测试结果表明.该催化剂的活性与Fe2O3在载体上的分散状况有关.  相似文献   

9.
以Al_2O_3为载体,Fe、Mn为活性组分,采用浸渍法制备了Mn-Fe/Al_2O_3催化剂,研究了Mn-Fe/Al_2O_3催化剂的低温脱硝性能.实验结果表明,Fe负载量为7%时,7Fe/Al_2O_3催化剂显示出较佳的低温脱硝性能;添加Mn能明显改变7Fe/Al_2O_3催化剂低温脱硝性能,其中当Mn/Fe质量比为11∶7时,11Mn7Fe/Al_2O_3催化剂获得最佳低温脱硝效率.对催化剂的表征结果表明,比表面积和孔径的大小不是决定催化剂性能高低的主要因素;Mn O2和Fe2O3在x Mn7Fe/Al_2O_3催化剂中具有较强的相互作用,影响活性组分微观晶体结构,改善活性组分分散程度,从而提高了催化剂的低温脱硝性能;Fe的添加使催化剂表面酸性位点数目增加,从而提高7Fe/Al_2O_3催化剂的低温脱硝效率.添加Mn不仅增多了11Mn7Fe/Al_2O_3催化剂表面酸性位点数目增加,而且使催化剂表面出现新的中强性酸位点,使其低温脱硝效率进一步提高;经过详细分析,结果表明表面吸附氧Oβ、Mn4+和Fe3+的含量较高是11Mn7Fe/Al_2O_3催化剂脱硝活性较高的主要原因.  相似文献   

10.
以Al2O3为载体,采用吸附-沉淀法制备一系列Ru-Fe/Al2O3催化剂,并进行了H2-TPR、XRD及XPS表征。以马来酸二甲酯(DMM)催化加氢合成丁二酸二甲酯(DMS)为探针反应,考察了Fe的加入对Ru/Al2O3催化性能的影响。评价结果表明,当Fe/Ru原子比小于2时,催化剂活性变化不大;但Fe/Ru原子比大于或等于2时,催化剂活性明显增加;与Ru/Al2O3催化剂相比,Fe的加入改善了催化剂的高温氧化还原处理稳定性。以甲醇为溶剂,在70℃、1.0 MPa压力、600 r/min转速下,Ru-Fe/Al2O3催化DMM的转化率与生成DMS的选择性均接近100%。XPS和H2-TPR表征结果表明,Ru-Fe/Al2O3中Fe与Ru产生较强的相互作用,促进Ru的分散且调变了Ru的电子特性。  相似文献   

11.
XRD研究表明 ,作为乙苯脱氢催化剂中的氧化铁活性组分 ,具有反式尖晶石结构的Fe3O4 比刚玉型的α Fe2O3 更易与钾助催化剂发生相互作用 :α Fe2O3-K2O需经850℃煅烧才能生成多铁酸钾 ,但在Fe3O4 -K2O体系中只需700℃即可.而且 ,钾还可抑制Fe3O4 被氧化为α Fe2O3 的进程 ,在空气中 ,Fe3O4 只需300℃煅烧即可明显转化为α Fe2O3 ,但同样的转化在Fe3O4 K2O体系中要经700℃煅烧才会明显地发生.实验结果表明 ,某种形态的多铁酸钾可能是催化剂中的储钾相.  相似文献   

12.
采用共沉淀法制备了系列铜负载量不同的Cu/Fe2O3水煤气变换(WGS)催化剂,并考察了铜负载量对催化剂结构和水煤气变换反应性能的影响.结果表明,Cu/Fe2O3催化剂呈现出良好的水煤气反应性能,当CuO质量分数为20%时,催化剂的WGS性能最优,250°C时CO转化率高达97.2%,同时热稳定性也最好.运用X射线粉末衍射(XRD)、N2物理吸脱附和H2程序升温还原(H2-TPR)等手段对Cu/Fe2O3催化剂的物相、织构特征及还原性能进行了表征,结果表明,CuFe2O4物种的存在极大地改善了催化剂的还原性能和WGS反应活性.这是由于CuFe2O4特殊的尖晶石结构有利于Cu微晶的稳定;同时,CuFe2O4在低温下即被还原为单质铜,有利于促进催化剂体系中电子的转移.此外,通过(NH4)2CO3溶液处理,研究了独立相CuO对Cu/Fe2O3催化剂WGS反应性能的影响,结果发现,独立相CuO的存在,有利于H原子在各组分传递,从而促进催化剂的CuFe2O4的还原,改善Cu/Fe2O3催化剂的WGS反应性能.  相似文献   

13.
利用具有高比表面积和介孔结构的改性铝土矿为载体,采用并流共沉淀法制备不同Fe2O3含量的Cu-Fe/铝土矿催化剂。以水煤气变换反应为探针反应,考察了催化剂性能。利用X射线荧光元素分析(XRF)、X射线粉末衍射(XRD)、H2程序升温还原(H2-TPR)、CO程序升温脱附(CO-TPD)和X射线光电子能谱(XPS)等对催化剂进行了表征。结果表明:负载的Fe2O3能显著提高CuO/改性铝土矿催化剂的水煤气变换活性特别是热稳定性能,且随负载的Fe2O3含量增加而提高,当负载量为20%时达到最佳。其原因是负载的Fe2O3和CuO之间发生了相互作用,形成了类似于CuFe2O4复合氧化物,且随负载的Fe2O3含量的增加而增强,这种相互作用同时促进了CuO和Fe2O3的还原,抑制了CuO的烧结,进而提高了催化剂的性能。  相似文献   

14.
Fe1-xO基氨合成催化剂是我国独创的新一代催化剂[1];由于其具有高活性、易还原的特点,因而在工业上得到了广泛的应用[2].我们在文献[3~6]中报道了助剂Al2O3,K2O和CaO对Fe1-xO基催化剂物理结构、活性和还原性能的影响规律以及Fe1-xO基催化剂母体相Fe1-xO的歧化行为及其助剂的影响等.本文从比活性和相对活性两个角度分析了Fei-xO基催化剂高活性的本质,从母体相的化学本质、氢在催化剂表面的吸附性能及助剂的作用等角度分析了催化剂易还原的本质,获得了一些重要而明确的结果.  相似文献   

15.
Ce0.67Zr0.33O2对CH4燃烧催化剂Fe2O3/Al2O3的改性作用   总被引:1,自引:0,他引:1  
固定n(Ce)/n(Zr)比为0.67/0.33, 用共沉淀法制得一系列CeO2-ZrO2-Al2O3固溶体. 采用这些固溶体作载体, 以Fe2O3为活性组分, 用浸渍法制备了一系列催化剂. BET结果显示, 将适量Ce0.67Zr0.33O2引入到Al2O3载体中有助于催化剂保持较高的比表面积. TPR结果显示, 载体中引入适量的Ce0.67Zr0.33O2可以改善催化剂的氧化还原性能. XRD结果表明, Fe2O3在CeO2-ZrO2-Al2O3载体上呈现出良好的分散状况, 老化前后催化剂的晶相结构基本无明显变化. 特别是当载体中m(Ce0.67Zr0.33O2)∶m(Al2O3)的值为1∶2时, Fe2O3/CeO2-ZrO2-Al2O3催化剂在甲烷催化燃烧中显示出最佳的催化性能和抗高温老化性能.  相似文献   

16.
固定n(Ce)/n(Zr)比为0.67/0.33,用共沉淀法制得一系列CeO2-ZrO2-Al2O3固溶体.采用这些固溶体作载体,以Fe2O3为活性组分,用浸渍法制备了一系列催化剂.BET结果显示,将适量Ce0.67Zr0.33O2引入到Al2O3载体中有助于催化剂保持较高的比表面积.TPR结果显示,载体中引入适量的Ce0.67Zr0.33O2可以改善催化剂的氧化还原性能.XRD结果表明,Fe2O3在CeO2-ZrO2-Al2O3载体上呈现出良好的分散状况,老化前后催化剂的晶相结构基本无明显变化.特别是当载体中m(Ce0.67Zr0.33O2)∶m(Al2O3)的值为1∶2时,Fe2O3/CeO2-ZrO2-Al2O3催化剂在甲烷催化燃烧中显示出最佳的催化性能和抗高温老化性能.  相似文献   

17.
Fe2O3/CNT催化湿法H2O2氧化苯酚   总被引:3,自引:0,他引:3  
通过化学沉积法和热处理得到多壁碳纳米管负载Fe2O3催化剂 Fe2O3/CNT, Fe2O3的负载质量分数约为15.1%,XRD表征显示,负载的Fe2O3存在α和γ这2种晶型。考察了Fe2O3/CNT催化湿式H2O2氧化去除废水中苯酚催化性能,通过苯酚的去除率及反应过程中催化剂活性组分的溶出总量,研究了催化剂制备过程中添加聚乙烯醇对催化剂性能的影响。在苯酚和H2O2初始浓度分别为350和1 500 mg/L、催化剂投加量为1.0 g/L、温度80 ℃条件下,经过240 min的反应,苯酚去除率达100%,COD去除率为86.1%。  相似文献   

18.
制备参数对Au/Fe2O3催化剂水煤气变换性能的影响   总被引:3,自引:1,他引:3  
华金铭  郑起  林性贻  魏可镁 《催化学报》2003,24(12):957-963
 采用共沉淀法制备了Au/Fe2O3催化剂,并系统地考察了制备参数对其催化WGS性能的影响.通过BET,XRD,XRF,H2-TPR和HRTEM等表征手段,初步考察了Au/Fe2O3催化剂具有高催化活性的原因.结果表明,金负载量、沉淀剂种类、沉淀方式、沉淀pH值、焙烧气氛和焙烧温度对Au/Fe2O3催化剂的催化性能均具有较大的影响.Au/Fe2O3催化剂的低温高活性是纳米Au与Fe3O4协同作用的结果;Au/Fe2O3催化剂的高温活性是由于活性相Fe3O4起主要作用的结果.纳米Au粒子的烧结会降低其催化活性.  相似文献   

19.
 利用恒温还原和程序升温还原技术研究了水分压对铁基费托合成催化剂还原路径、还原机理和表观活化能的影响. 程序升温还原结果表明, 水分压对催化剂的还原路径没有明显的影响, 催化剂均首先由 α-Fe2O3 还原为 Fe3O4, 然后超顺磁态 Fe3O4 先还原为 FeO, 再还原为 α-Fe, 而顺磁态 Fe3O4 则直接还原为 α-Fe. 恒温还原结果表明, 催化剂在 2.5%H2O-97.5%H2 气氛中还原时, 还原过程达到平衡时的还原程度随还原温度的升高而增加. 利用 Hancock-Sharp 方法分析了恒温还原过程的动力学模型. 结果表明, 还原温度较低时, 催化剂在 2.5%H2O-97.5%H2 气氛中还原时受内扩散模型控制; 还原温度较高时则受晶相形成与生长模型控制. 利用 Kissinger 方法计算了还原过程的活化能, 发现随着水分压的增加, 表观活化能呈增大的趋势. 水分压对 Fe3O4 还原为 α-Fe 过程的影响大于其对 α-Fe2O3 还原为 Fe3O4 过程的影响.  相似文献   

20.
 采用共沉淀法制备了1.5%Au/Fe2O3催化剂,考察了加料方式对Au/Fe2O3催化剂化学组成及其催化富氢气体中CO选择性氧化性能的影响. 结果表明,正加法制备的Au/Fe2O3催化剂的性能明显好于反加法制备的催化剂,80 ℃时前者对富氢气体中CO选择性氧化反应的转化率为94%,CO2选择性为65%,连续反应10 h,催化剂活性没有变化. XRD,XPS和TEM等的测试结果表明,正加法制备的Au/Fe2O3催化剂中金粒子的平均粒径为2~4 nm,金粒子高度分散在载体上,并与载体之间发生了较强的相互作用,从而表现出较高的催化性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号