首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Flavin‐binding fluorescent proteins (FbFPs) are small, oxygen‐independent in vivo reporters, derived from Light Oxygen Voltage (LOV) domains of photoreceptors. Here, we investigated the thermostability of existing, as well as novel FbFPs, whose genes were identified in genome sequences of various thermophilic bacteria as well as metagenomic libraries from hot springs in the Yellowstone National Park. Detailed in vitro analyses revealed that two of those fluorescent reporter proteins were highly thermostable, exhibiting melting temperatures above 75°C.  相似文献   

2.
3.
Detection of blue light (BL) via flavin‐binding photoreceptors (Fl‐Blues) has evolved throughout all three domains of life. Although the main BL players, that is light, oxygen and voltage (LOV), blue light sensing using flavins (BLUF) and Cry (cryptochrome) proteins, have been characterized in great detail with respect to structure and function, still several unresolved issues at different levels of complexity remain and novel unexpected findings were reported. Here, we review the most prevailing riddles of LOV‐based photoreceptors, for example: the relevance of water and/or small metabolites for the dynamics of the photocycle; molecular details of light‐to‐signal transduction events; the interplay of BL sensing by LOV domains with other environmental stimuli, such as BL plus oxygen‐mediating photodamage and its impact on microbial lifestyles; the importance of the cell or chromophore redox state in determining the fate of BL‐driven reactions; the evolutionary pathways of LOV‐based BL sensing and associated functions through the diverse phyla. We will discuss major novelties emerged during the last few years on these intriguing aspects of LOV proteins by presenting paradigmatic examples from prokaryotic photosensors that exhibit the largest complexity and richness in associated functions.  相似文献   

4.
The synthesis of the two new phosphoramidites 5 and 8 bearing a carbostyril (=quinolin‐2(1H)‐one) chromophore used as donor entity in our recently developed new FRET (fluorescence‐resonance‐energy transfer) system is described (Schemes 1 and 2) The high stability of the chromophore to basic conditions enables the incorporation of the phosphoramidites directly into DNA during solid‐phase synthesis (Schemes 3 and 4). Since this is also possible for the (bathophenanthroline)ruthenium(II) complex used as acceptor (Scheme 4, Steps d and e), the whole labelling procedure to insert the FRET system into synthetic DNA is straightforward and represents a major improvement to our previous strategy.  相似文献   

5.
6.
Flavin‐based photoreceptor proteins of the LOV (light, oxygen and voltage) superfamily are ubiquitous and appear to be essential blue‐light sensing systems not only in plants, algae and fungi, but also in prokaryotes, where they are represented in more than 10% of known species. Despite their broad occurrence, only in few cases LOV proteins have been correlated with important phenomena such as bacterial infectivity, selective growth patterns or/and stress responses; nevertheless these few known roles are helping us understand the multiple ways by which prokaryotes can exploit these soluble blue‐light photoreceptors. Given the large number of sequences now deposited in databases, it becomes meaningful to define a signature for bona fide LOV domains, a procedure that facilitates identification of proteins with new properties and phylogenetic analysis. The latter clearly evidences that a class of LOV proteins from alpha‐proteobacteria is the closest prokaryotic relative of eukaryotic LOV domains, whereas cyanobacterial sequences cluster with the archaeal and the other bacterial LOV domains. Distance trees built for LOV domains suggest complex evolutionary patterns, possibly involving multiple horizontal gene transfer events. Based on available data, the in vivo relevance and evolution of prokaryotic LOV is discussed.  相似文献   

7.
8.
Zero‐mode waveguides (ZMWs) can confine light into attoliter volumes, which enables single molecule fluorescence experiments at physiological micromolar concentrations. Of the fluorescence spectroscopy techniques that can be enhanced by ZMWs, Förster resonance energy transfer (FRET) is one of the most widely used in life sciences. Combining zero‐mode waveguides with FRET provides new opportunities to investigate biochemical structures or follow interaction dynamics at micromolar concentrations with single‐molecule resolution. However, prior to any quantitative FRET analysis on biological samples, it is crucial to establish first the influence of the ZMW on the FRET process. Here, we quantify the FRET rates and efficiencies between individual donor–acceptor fluorophore pairs that diffuse into aluminum zero‐mode waveguides. Aluminum ZMWs are important structures thanks to their commercial availability and the large amount of literature that describe their use for single‐molecule fluorescence spectroscopy. We also compared the results between ZMWs milled in gold and aluminum, and found that although gold has a stronger influence on the decay rates, the lower losses of aluminum in the green spectral region provide larger fluorescence brightness enhancement factors. For both aluminum and gold ZMWs, we observed that the FRET rate scales linearly with the isolated donor decay rate and the local density of optical states. Detailed information about FRET in ZMWs unlocks their application as new devices for enhanced single‐molecule FRET at physiological concentrations.  相似文献   

9.
陈显平  ab  黄美发a  王斌a 《中国化学》2008,26(8):1486-1492
黄素为辅基的色氨酸卤化酶在催化合成有机氯化物和溴化物过程中的起着非常重要的作用。在这篇论文我们将阐述一种通过在假单胞菌株中表达外源色氨酸卤化酶基因来催化合成3-(2-氨基-4-氯苯基)吡咯的新组合生物合成方法——组合培育法。3-(2-氨基-4-氯苯基)吡咯是分析和诱导性基因突变硝吡咯菌素生物合成途径的重要中间产物。研究表明,这种新的组合培育法可以用于改变和分析一些重要的二级代谢途径。  相似文献   

10.
Mechanistic insights into chemical photocatalysis are mainly the domain of UV/Vis spectroscopy, because NMR spectroscopy has been limited by the type of illumination so far. An improved LED‐based illumination device can be used to obtain NMR reaction profiles of photocatalytic reactions under synthetic conditions and perform both photo‐CIDNP and intermediate studies. Flavin‐catalyzed photooxidations of alcohols show the potential of this setup. After identical initial photoreaction steps the stabilization of a downstream intermediate is the key to the further reaction mechanism and the reactivity. As a chemical photocatalyst flavin can act either as a one‐ or a two‐electron mediator when the stability of the zwitterionic radical pair is moldulated in different solvents. This demonstrates the importance of downstream intermediates and NMR‐accessible complementary information in photocatalytic reactions and suggests the control of photoorganic reactions by solvent effects.  相似文献   

11.
We report a feasibility study for the application of our newly developed highly efficient and robust fluorescence‐resonance‐energy‐transfer (FRET) system to DNA. A 2′‐oligodeoxynucleotide, 12 , equipped with a quinolinone derivative as donor and a (bathophenanthroline)ruthenium(II) complex as acceptor and having a single uridine as potential cleavage site under basic conditions revealed an intensive FRET, which almost vanished after cleavage of the oligonucleotide under basic conditions (Fig. 7). Furthermore, in the arrangement of a molecular beacon (MB) DNA (see 13 ), a significant decrease of the FRET was observed after hybridization to a target sequence (Fig. 9). Due to the long decay times of the fluorescence of the Ru‐complex, the system allows for highly sensitive time‐gated measurements.  相似文献   

12.
Degradable synthetic crosslinking is a versatile strategy to harness nanomaterials against disassembly in a complex physiological medium prompted by dilution effects or competitive interaction. In particular, chemical bonds such as ketals that are stable at physiological conditions but are cleaved in response to disease‐mediated or intracellular conditions (e.g., a mildly acidic pH) are of great relevance for biomedical applications. Despite the range of spectroscopic or chromatographic analyses methods that allow chemical degradation in solution to be assessed, it is much less straightforward to interrogate synthetic nanomaterials for their degradation state when located inside a living organism. We demonstrate a method based on FRET analysis to monitor intracellular disassembly of block‐copolymer‐derived nanoparticles engineered with a FRET couple on separate polymer chains, which after self‐assembly are covalently crosslinked with a pH‐sensitive ketal‐containing crosslinker.  相似文献   

13.
The confined space inside a self‐assembled cage enhanced halogen bonding (XB) between iodoperfluorocarbons (XB donors) and NO3? anions or H2O molecules (XB acceptors), as confirmed by NMR spectroscopy in solution and by X‐ray crystallography in the solid state. The cavity also bound an XB donor–acceptor pair, C6F3I3 and C6H5NMe2, in a selective pairwise fashion.  相似文献   

14.
15.
Microcapsules obtained by layer‐by‐layer assembly provide a good platform for biological analysis owing to their component diversity, multiple binding sites, and controllable wall thickness. Herein, different assembly species were obtained from two‐photon dyes and traditional photosensitizers, and further assembled into microcapsules. Fluorescence resonance energy transfer (FRET) was shown to occur between the two‐photon dyes and photosensitizers. Confocal laser scanning microscopy (CLSM) with one‐ and two‐photon lasers, fluorescence lifetime imaging microscopy (FLIM), and time‐resolved fluorescence spectroscopy were used to analyze the FRET effects in the microcapsules. The FRET efficiency could easily be controlled through changing the assembly sequence. Furthermore, the capsules are phototoxic upon one‐ or two‐photon excitation. These materials are thus expected to be applicable in two‐photon‐activated photodynamic therapy for deep‐tissue treatment.  相似文献   

16.
17.
18.
19.
We report on a new three‐color FRET system consisting of three fluorescent dyes, i.e., of a carbostyril (=quinolin‐2(1H)‐one)‐derived donor D, a (bathophenanthroline)ruthenium complex as a relay chromophore A1, and a Cy dye as A2 (FRET=Förster resonance‐energy‐transfer) (cf. Fig. 1). With their widely matching spectroscopic properties (cf. Fig. 2), the combination of these dyes yielded excellent FRET efficiencies. Furthermore, fluorescence lifetime measurements revealed that the long fluorescence lifetime of the Ru complex was transferred to the Cy dye offering the possibility to measure the whole system in a time‐resolved mode. The FRET system was established on double‐stranded DNA (cf. Fig. 3) but it should also be generally applicable to other biomolecules.  相似文献   

20.
Tracking membrane‐interacting molecules and visualizing their conformational dynamics are key to understanding their functions. It is, however, challenging to accurately probe the positions of a molecule relative to a membrane. Herein, a single‐molecule method, termed LipoFRET, is reported to assess interplay between molecules and liposomes. It takes advantage of FRET between a single fluorophore attached to a biomolecule and many quenchers in a liposome. This method was used to characterize interactions between α‐synuclein (α‐syn) and membranes. These results revealed that the N‐terminus of α‐syn inserts into the membrane and spontaneously transitions between different depths. In contrast, the C‐terminal tail of α‐syn is regulated by calcium ions and floats in solution in two conformations. LipoFRET is a powerful tool to investigate membrane‐interacting biomolecules with sub‐nanometer precision at the single‐molecule level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号