首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Alternative splicing plays an important role in proteasome diversity and gene expression regulation in eukaryotic cells. Hdm2, the human homolog of mdm2 (murine double minute oncogene 2), is known to be an oncogene as its role in suppression of p53. Hdm2 alternative splicing, occurs in both tumor and normal tissues, is believed to be a response of cells for cellular stress, and thus modulate p53 activity. Therefore, understanding the regulation of hdm2 splicing is critical in elucidating the mechanisms of tumor development and progression. In this study, we determined the effect of ultraviolet B light (UVB) on alternative splicing of hdm2. Our data indicated that UVB (50 mJ cm?2) alone is not a good inducer of alternative splicing of hdm2. The less effectiveness could be due to the induction of ROS and p53 by UVB because removing ROS by L‐NAC (10 mm ) in p53 null cells could lead to alternative splicing of hdm2 upon UVB irradiation.  相似文献   

4.
Human homolog double minute 2 (hdm2), an oncoprotein, which binds to tumor suppressor p53 to facilitate its degradation, has been known to contribute to tumorigenesis. Its splicing variants are reported to be highly expressed in many cancers and can be induced by ultraviolet B light (UVB). However, the mechanisms of how UVB radiation induces hdm2 alternative splicing still remain unclear. In this study, we investigated the roles of two common splicing factors, heterogeneous nuclear ribonucleoproteins (hnRNP) A1 and serine/arginine‐rich splicing factor 1 (SRSF1), in regulating UVB‐induced hdm2 splicing. Our study indicated that while the expression of both hnRNP A1 and SRSF1 are induced, only hnRNP A1 is involved in hdm2 alternative splicing upon UVB irradiation. Overexpression of hnRNP A1 resulted in decrease of full‐length hdm2 (hdm2‐FL) and increase of hdm2B, one of hdm2 alternate‐splicing forms; while down‐regulated hnRNP A1 expression led to the decrease of the hdm2‐FL and hdm2B in HaCaT cells. Protein‐mRNA binding assay confirmed that UVB irradiation could increase the binding of hnRNP A1 to hdm2 pre‐mRNA. In conclusion, we elucidated that UVB induces alternative splicing of hdm2 by increasing the expression and the binding of hnRNP A1 to hdm2 full‐length mRNA.  相似文献   

5.
Melanopsin is a G protein‐coupled receptor with a peak sensitivity in the blue part of the spectrum, which plays a key role in nonvisual light‐mediated signaling. Recently, its importance in forming visual pathway as well as its role in blood vessels photorelaxation was also revealed. Melanopsin was discovered in 1998 in Xenopus leavis. Since then, the melanopsin presence was demonstrated across the species. The existence of two melanopsin genes (opn4m and opn4x) as well as melanopsin isoforms resulting from alternative splicing contributes to the variety in melanopsin‐regulated processes. In this review, the diversity in melanopsin‐induced signaling, regulation of melanopsin activity by phosphorylation and regulation of melanopsin mRNA are discussed.  相似文献   

6.
Cyclic peptides are important natural products and hold great promise for the identification of new bioactive molecules. The split‐intein‐mediated SICLOPPS technology provides a generic access to fully genetically encoded head‐to‐tail cyclized peptides and large libraries thereof (SICLOPPS=split‐intein circular ligation of peptides and proteins). However, owing to the spontaneous protein splicing reaction, product formation occurs inside cells, making peptide isolation inconvenient and precluding traditional in vitro assays for inhibitor discovery. The design of a genetically encoded, light‐dependent intein using the photocaged tyrosine derivative ortho‐nitrobenzyltyrosine incorporated at an internal, non‐catalytic position is now reported. Stable intein precursors were purified from the E. coli expression host and subsequently subjected to light activation in vitro for both the regular protein splicing format and cyclic peptide production, including the natural product segetalin H as an example. The activity of the intein could also be triggered in living cells.  相似文献   

7.
Cyclic peptides are important natural products and hold great promise for the identification of new bioactive molecules. The split‐intein‐mediated SICLOPPS technology provides a generic access to fully genetically encoded head‐to‐tail cyclized peptides and large libraries thereof (SICLOPPS=split‐intein circular ligation of peptides and proteins). However, owing to the spontaneous protein splicing reaction, product formation occurs inside cells, making peptide isolation inconvenient and precluding traditional in vitro assays for inhibitor discovery. The design of a genetically encoded, light‐dependent intein using the photocaged tyrosine derivative ortho‐nitrobenzyltyrosine incorporated at an internal, non‐catalytic position is now reported. Stable intein precursors were purified from the E. coli expression host and subsequently subjected to light activation in vitro for both the regular protein splicing format and cyclic peptide production, including the natural product segetalin H as an example. The activity of the intein could also be triggered in living cells.  相似文献   

8.
9.
To avoid photodamage, photosynthetic organisms have developed mechanisms to evade or dissipate excess energy. Lumen overacidification caused by light‐induced electron transport triggers quenching of excited chlorophylls and dissipation of excess energy into heat. In higher plants participation of the PsbS protein as the sensor of low lumenal pH was clearly demonstrated. Although light‐dependent energy quenching is a property of all photosynthetic organisms, large differences in amplitude and kinetics can be observed thus raising the question whether a single common mechanism is in action. We performed a detailed study of PsbS expression/accumulation in Chlamydomonas reinhardtii and investigated its accumulation in other algae and plants. We showed that PsbS cannot be detected in Chlamydomonas under a wide range of growth conditions. Overexpression of the endogenous psbs gene showed that the corresponding protein could not be addressed to the thylakoid membranes. Survey of different unicellular green algae showed no accumulation of anti‐PsbS reactive proteins differently from multicellular species. Nevertheless, some unicellular species exhibit high energy quenching activity, suggesting that a PsbS‐independent mechanism is activated. By correlating growth habitat and PsbS accumulation in different species, we suggest that during the evolution the light environment has been a determinant factor for the conservation/loss of the PsbS function.  相似文献   

10.
11.
12.
13.
In addition to exposure to passive diurnal cycles of sunlight, humans are also subjected to intentional acute exposure to other types of electromagnetic radiation (EM). Understanding the molecular mechanisms involved in the physiological, pathological and therapeutic responses to exposure to radiation is an active area of research. With the advent of methods to readily catalog and identify patterns of changes in gene expression, many studies have reported changes in gene expression upon exposure of various human and mouse cells in vitro, whole experimental organisms such as mice and parts of human body. However, the molecular mechanisms underlying these broad ranging changes in gene expression are not yet fully understood. MicroRNAs, which are short, noncoding RNAs that regulate gene expression by targeting many messenger RNAs, are also emerging as important mediators of radiation‐induced changes in gene expression and hence critical for the manifestation of light‐induced cellular phenotypes and physiological responses. In this article, we review available knowledge on microRNAs implicated in responses to various forms of solar and other EM radiation. Based on this knowledge, we elaborate some unifying themes in the regulation and functions of some of these miRNAs.  相似文献   

14.
15.
16.
A summary of the major findings concerning light modulation in Acinetobacter baumannii, which governs aspects related to the success of this microorganism as a nosocomial pathogen, is presented. Particularly, the evidence shows that light modulates the ability of the bacteria to persist in the environment, its virulence against eukaryotic hosts and even susceptibility to certain antibiotics. The light signal is sensed through different mechanisms, in some cases involving specialized photoreceptors of the BLUF‐type, whereas in others, directly by a photosensitizer molecule. We also provide new data concerning the genomic context of BLUF‐domain containing proteins within the genus Acinetobacter, as well as further insights into the mechanism of light‐mediated reduction in susceptibility to antibiotics. The overall information points toward light being a crucial stimulus in the lifestyle of members of the genus Acinetobacter as well as in other clinically relevant species, such as members of the ESKAPE group, playing therefore an important role in the clinical settings.  相似文献   

17.
To collect information on gene expression during the dark period in the luminous dinoflagellate Lingulodinium polyedrum, normalized complementary DNA (cDNA) libraries were constructed from cells collected during the first hour of night phase in a 12:12 h light‐dark cycle. A total of 4324 5′‐end sequence tags were isolated. The sequences were grouped into 2111 independent expressed sequence tags (EST) from which 433 groups were established by similarity searches of the public nonredundant protein database. Homology analysis of the total sequences indicated that the luminous dinoflagellate is more similar to land plants and animals (vertebrates and invertebrates) than to prokaryotes or algae. We also isolated three bioluminescence‐related (luciferase and two luciferinbinding proteins [LBP]) and 37 photosynthesis‐related genes. Interestingly, two kinds of LBP genes occur in multiple copies in the genome, in contrast to the single luciferase gene. These cDNA clones and EST sequence data should provide a powerful resource for future genome‐wide functional analyses for uncharacterized genes.  相似文献   

18.
We previously demonstrated that apoptosis induced by tocotrienols (γ and δT3) in HeLa cells is preceded by Ca2+ release from the endoplasmic reticulum. This event is eventually followed by the induction of specific calcium-dependent signals, leading to the expression and activation of the gene encoding for the IRE1α protein and, in turn, to the alternative splicing of the pro-apoptotic protein sXbp1 and other molecules involved in the unfolded protein response, the core pathway coping with EndoR stress. Here, we showed that treatment with T3s induces the expression of a specific set of miRNAs in HeLa cells. Data interrogation based on the intersection of this set of miRNAs with a set of genes previously differentially expressed after γT3 treatment provided a few miRNA candidates to be the effectors of EndoR-stress-induced apoptosis. To identify the best candidate to act as the effector of the Xbp1-mediated apoptotic response to γT3, we performed in silico analysis based on the evaluation of the highest ∆ in Gibbs energy of different mRNA–miRNA–Argonaute (AGO) protein complexes. The involvement of the best candidate identified in silico, miR-190b, in Xbp1 splicing was confirmed in vitro using T3-treated cells pre-incubated with the specific miRNA inhibitor, providing a preliminary indication of its role as an effector of EndoR-stress-induced apoptosis.  相似文献   

19.
Photomotility responses in flagellate alga are mediated by two types of sensory rhodopsins (A and B). Upon photoexcitation they trigger a cascade of transmembrane currents which provide sensory transduction of light stimuli. Both types of algal sensory rhodopsins demonstrate light‐gated ion channel activities when heterologously expressed in animal cells, and therefore they have been given the alternative names channelrhodopsin 1 and 2. In recent publications their channel activity has been assumed to initiate the transduction chain in the native algal cells. Here we present data showing that: (1) the modes of action of both types of sensory rhodopsins are different in native cells such as Chlamydomonas reinhardtii than in heterologous expression systems, and also differ between the two types of rhodopsins; (2) the primary function of Type B sensory rhodopsin (channelrhodopsin‐2) is biochemical activation of secondary Ca2+‐channels with evidence for amplification and a diffusible messenger, sufficient for mediating phototaxis and photophobic responses; (3) Type A sensory rhodopsin (channelrhodopsin‐1) mediates avoidance responses by direct channel activity under high light intensities and exhibits low‐efficiency amplification. These dual functions of algal sensory rhodopsins enable the highly sophisticated photobehavior of algal cells.  相似文献   

20.
Xenopus laevis melanophores express two melanopsins, Opn4x and Opn4m. We identified Opn4x immunoreactivity throughout the melanophore cytoplasm and in the cell membrane. The strongest immunopositivity for Opn4m was observed in the nuclear region, and no labeling was seen in the cell membrane. This immunodistribution suggests Opn4x as the functional photopigment. In X. laevis melanophores, light triggers pigment dispersion and clock gene induction at blue wavelength, which maximally activates melanopsins. Although light stimulation activates phospholipase C and increases intracellular calcium and cGMP, this nucleotide does not participate in photo‐induced melanin dispersion. Nevertheless, the guanylyl cyclase activator YC‐1 stimulates Per1 expression, similar to blue light pulse, and the use of pharmacological inhibitors indicates the participation of the phosphoinositide cascade. Since cAMP levels does not change after blue light stimulation, the cAMP/PKA pathway most probably is not involved in blue light induction of Per in X. laevis melanophores. Given the localization of melanopsins and our pharmacological data, the light‐induced clock gene expression seems to be mediated by Opn4x through phosphoinositide cascade and rise in cGMP, thus leading to the reset of the biological clock in our model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号