首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
We previously reported that when cultured goldfish cells are illuminated with fluorescent light, photorepair ability for both cyclobutane pyrimidine dimers and (6–4) photoproducts increased. In the present study, it was found that the duration of the induced photorepair ability for cyclobutane pyrimidine dimers was longer than that for (6–4) photoproducts, suggesting the presence of different photolyases for repair of these two major forms of DNA damage. A gel shift assay was then performed to show the presence of protein(s) binding to (6–4) photoproducts and its dissociation from (6–4) photoproducts under fluorescent light illumination. In addition, at 8 h after fluorescent light illumination of the cell, the binding of pro-tein(s) to (6–4) photoproducts increased. The restriction enzymes that have recognition sites containing TT or TC sequences failed to digest the UV-irradiated DNA pho-toreactivated by using Escherichia coli photolyase for cyclobutane pyrimidine dimers, indicating that restriction enzymes could not function because (6–4) photoproducts remained in recognition sites. But, when UV-irradiated DNA depleted of cyclobutane pyrimidine dimers was incubated with extract of cultured goldfish cells under fluorescent light illumination, it was digested with those restriction enzymes. These results suggested the presence of (6–4) photolyase in cultured goldfish cells as in Dro-sophila, Xenopus and Crotalus.  相似文献   

2.
UV‐light irradiation induces the formation of highly mutagenic lesions in DNA, such as cis‐syn cyclobutane pyrimidine dimers (CPD photoproducts), pyrimidine(6‐4)pyrimidone photoproducts ((6‐4) photoproducts) and their Dewar valence isomers ((Dew) photoproducts). Here we describe the synthesis of defined DNA strands containing these lesions by direct irradiation. We show that all lesions are efficiently repaired except for the T(Dew)T lesion, which cannot be cleaved by the repair enzyme under our conditions. A crystal structure of a T(6‐4)C lesion containing DNA duplex in complex with the (6‐4) photolyase from Drosophila melanogaster provides insight into the molecular recognition event of a cytosine derived photolesion for the first time. In light of the previously postulated repair mechanism, which involves rearrangement of the (6‐4) lesions into strained four‐membered ring repair intermediates, it is surprising that the not rearranged T(6‐4)C lesion is observed in the active site. The structure, therefore, provides additional support for the newly postulated repair mechanism that avoids this rearrangement step and argues for a direct electron injection into the lesion as the first step of the repair reaction performed by (6‐4) DNA photolyases.  相似文献   

3.
Proteins of the cryptochrome/photolyase family (CPF) exhibit sequence and structural conservation, but their functions are divergent. Photolyase is a DNA repair enzyme that catalyzes the light‐dependent repair of ultraviolet (UV)‐induced photoproducts, whereas cryptochrome acts as a photoreceptor or circadian clock protein. Two types of DNA photolyase exist: CPD photolyase, which repairs cyclobutane pyrimidine dimers (CPDs), and 6‐4 photolyase, which repairs 6‐4 pyrimidine–pyrimidone photoproducts (6‐4PPs). Although the Cry‐DASH protein is classified as a cryptochrome, it also has light‐dependent DNA repair activity. To determine the significance of the three light‐dependent repair enzymes in recovering from solar UV‐induced DNA damage at the organismal level, we generated mutants in each gene in medaka using the CRISPR genome editing technique. The light‐dependent repair activity of the mutants was examined in vitro in cultured cells and in vivo in skin tissue. Light‐dependent repair of CPD was lost in the CPD photolyase‐deficient mutant, whereas weak repair activity against 6‐4PPs persisted in the 6‐4 photolyase‐deficient mutant. These results suggest the existence of a heretofore unknown 6‐4PP repair pathway and thus improve our understanding of the mechanisms of defense against solar UV in vertebrates.  相似文献   

4.
5.
We have compared the distributions of two stable UV photoproducts in nucleosome core DNA at the single-nucleotide level using a T4 polymerase-exonuclease mapping procedure. The distribution of pyrimidine-pyrimidone (6-4) dimers was uncovered by reversing the major UV photo-product, cis-syn cyclobutane pyrimidine dimer, with E. coli DNA photolyase and photoreactivating light. Whereas the distribution of total UV photoproducts in nucleosome core DNA forms a striking 10.3 base periodic pattern, the distribution of (6-4) dimers is much more random throughout the nucleosome core domain. Therefore, histone-DNA interactions in nucleosomes strongly modulate formation of the major class of UV-induced photoproducts, while having either a constant effect or no effect on (6-4) dimer formation.  相似文献   

6.
Abstract— The significance of the pyrimidine(6-4)pyrimidone photoproduct in mammalian cell killing is considered. Photochemical data indicate that the(6–4) photoproduct is induced at a substantial frequency compared to the cyclobutane dimer and that the action spectra for the induction of both lesions are equivalent. The repair of(6–4) photoproducts in various normal and UV-hypcrsensitive mammalian cell lines, including several recently derived somatic cell hybrids and transformants, is presented. The sensitivity of these cells to ultraviolet irradiation correlates better with the capacity to repair(6–4) photoproducts than cyclobutane dimers. These data are used to support that idea that the(6–4) photoproduct is one of the major cytotoxic lesions induced in DNA by ultraviolet light.  相似文献   

7.
Monoclonal antibody aUVssDNA-1 is produced by hybridoma cell line 25JF.C3B6 originally selected from cell fusions using spleen cells from mice immunized with UV-irradiated polydeoxynucleotides (Strickland and Boyle, Photochem. Photobiol. 34, 595-601, 1981). Original and subsequent studies of the binding characteristics of aUVssDNA-1 indicated that it was specific for cyclobuta-dithymidine photoproducts. Those investigations examined action spectrum, short-wavelength photo-reversal, nucleotide sequence effects, and photoreactivation using E. coli photolyase and incandescent light. However, the more recent studies reported here examined acetophenone-UV-B photosensitization, UV-B photoisomerization, and photoreactivation using cloned E. coli photolyase and filtered incandescent light. The results indicate that aUVssDNA-1 recognizes photoproducts with characteristics of (6-4)-dipyrimidines. Thus, previous studies in which relatively rapid repair of cyclobuta-dithymidine photoproducts was inferred using this antibody, require re-interpretation in light of these new findings.  相似文献   

8.
Electrochemical study of oxetanes mimicking DNA (6-4) photoproducts gives new insight into the repair mechanism by (6-4) photolyase. Both electrochemical oxidation and electrochemical reduction at carbon electrodes lead to the cleavage of the oxetanes in a retro-Paterno-Büchi sequence. Within the family of compounds investigated and the range of driving forces offered, transient formation of unstable radical ions is observed, for both oxidative and reductive cleavage. Taking advantage of the electrochemical signature of these mimics, enzymatic assay with Escherichia coli CPD photolyase coupled to electrochemical monitoring of the reaction brings evidence that enzymatic repair of (6-4) DNA photoproducts does involve a catalytic dissociative electron-transfer mechanism at the level of an oxetane intermediate.  相似文献   

9.
Proteins of the cryptochrome/photolyase family share high sequence similarities, common folds, and the flavin adenine dinucleotide (FAD) cofactor, but exhibit diverse physiological functions. Mammalian cryptochromes are essential regulatory components of the 24 h circadian clock, whereas (6-4) photolyases recognize and repair UV-induced DNA damage by using light energy absorbed by FAD. Despite increasing knowledge about physiological functions from genetic analyses, the molecular mechanisms and conformational dynamics involved in clock signaling and DNA repair remain poorly understood. The (6-4) photolyase, which has strikingly high similarity to human clock cryptochromes, is a prototypic biological system to study conformational dynamics of cryptochrome/photolyase family proteins. The entire light-dependent DNA repair process for (6-4) photolyase can be reproduced in a simple in vitro system. To decipher pivotal reactions of the common FAD cofactor, we accomplished time-resolved measurements of radical formation, diffusion, and protein conformational changes during light-dependent repair by full-length (6-4) photolyase on DNA carrying a single UV-induced damage. The (6-4) photolyase by itself showed significant volume changes after blue-light activation, indicating protein conformational changes distant from the flavin cofactor. A drastic diffusion change was observed only in the presence of both (6-4) photolyase and damaged DNA, and not for (6-4) photolyase alone or with undamaged DNA. Thus, we propose that this diffusion change reflects the rapid (50 μs time constant) dissociation of the protein from the repaired DNA product. Conformational changes with such fast turnover would likely enable DNA repair photolyases to access the entire genome in cells.  相似文献   

10.
Several strategies have evolved to repair one of the abundant UV radiation‐induced damages caused to DNA, namely the mutagenic pyrimidine (6‐4) pyrimidone photolesions. DNA (6‐4)‐photolyases are enzymes repairing these lesions by a photoinitiated electron transfer. An important aspect of a possible repair mechanism is its generality and transferability to different (6‐4) lesions. Therefore, previously suggested mechanisms for the repair of the T(6‐4)T lesion are here transferred to the T(6‐4)C and C(6‐4)T lesions and investigated theoretically using quantum chemical methods. Despite the different functional groups of the pyrimidine bases involved, a general valid molecular mechanism was identified, in which the initial step is an electron transfer coupled to a proton transfer from the protonated HIS365 to the N3 nitrogen of the 3 pyrimidine, followed by an intramolecular OH/NH2 transfer in one concerted step, which does not require an oxetane/azetidine or isolated water/ammonia intermediate.  相似文献   

11.
Radioimmunoassays were used to investigate the repair of cyclobutane pyrimidine dimers and pyrimidine (6-4)pyrimidone photoproducts ((6-4] photoproducts) in the epidermis of the South American opossum, Monodelphis domestica. In the absence of photoreactivating light, both types of photodamage were excised with similar kinetics, 50% of the damage remaining 8 h after UV irradiation in vivo. Exposure of UV-irradiated skin to photoreactivating light resulted in removal of most of the cyclobutane dimers and an enhanced rate of (6-4) photoproduct repair. Photoenhanced excision repair of non-dimer damage increases the range of biologically effective lesions removed by in vivo photoreactivation.  相似文献   

12.
We reconstituted nucleosomes in vitro using two kinds of damaged pBR322 plasmid DNA carrying cyclobutane pyrimidine dimers (CPD) or (6-4)photoproducts. The results indicate that nucleosome assembly is inhibited preferentially by (6-4)photoproducts compared with CPD, suggesting that the regions carrying (6-4)photoproducts retain their nucleosome-free form, i.e. linker-like conformation until completion of the repair processes.  相似文献   

13.
Abstract
Monoclonal antibody aUVssDNA-1 is produced by hybridoma cell line 25JF.C3B6 originally selected from cell fusions using spleen cells from mice immunized with UV-irradiated polydeoxynucleotides (Strickland and Boyle, Photochem. Photobiol. 34 , 595–601, 1981). Original and subsequent studies of the binding characteristics of aUVssDNA-1 indicated that it was specific for cyclobuta-dithymidine photoproducts. Those investigations examined action spectrum, short-wavelength photo-reversal, nucleotide sequence effects, and photoreactivation using E. coli photolyase and incandescent tight. However, the more recent studies reported here examined acetophenone-UV-B photosensitization, UV-B photoisomerization, and photoreactivation using cloned E. coli photolyase and filtered incandescent light. The results indicate that aUVssDNA-1 recognizes photoproducts with characteristics of (6–4)-dipyrimidines. Thus, previous studies in which relatively rapid repair of cyclobuta-dithymidine photoproducts was inferred using this antibody, require re-interpretation in light of these new findings.  相似文献   

14.
The front cover artwork is provided by Miguel A. Miranda and co‐workers at Instituto de Tecnología Química (UPV‐CSIC). The image shows that (6–4) photoproducts, primary UVB dimeric lesions, act as photosensitizers of cyclobutane pyrimidine dimers that are produced as secondary DNA lesions. Read the full text of the article at 10.1002/cphc.201600154 .  相似文献   

15.
PhrB from Agrobacterium fabrum is the first prokaryotic photolyase which repairs (6‐4) UV DNA photoproducts. The protein harbors three cofactors: the enzymatically active FAD chromophore, a second chromophore, 6,7‐dimethyl‐8‐ribityllumazine (DMRL) and a cubane‐type Fe‐S cluster. Tyr424 of PhrB is part of the DNA‐binding site and could provide an electron link to the Fe‐S cluster. The PhrBY424F mutant showed reduced binding of lesion DNA and loss of DNA repair. The mutant PhrBI51W is characterized by the loss of the DMRL chromophore, reduced photoreduction and reduced DNA repair capacity. We have determined the crystal structures of both mutants and found that both mutations only affect local protein environments, whereas the overall fold remained unchanged. The crystal structure of PhrBY424F revealed a water network extending to His366, which are part of the lesion‐binding site. The crystal structure of PhrBI51W shows how the bulky Trp leads to structural rearrangements in the DMRL chromophore pocket. Spectral characterizations of PhrBI51W suggest that DMRL serves as an antenna chromophore for photoreduction and DNA repair in the wild type. The energy transfer from DMRL to FAD could represent a phylogenetically ancient process.  相似文献   

16.
The (6‐4) photolyases of the FeS‐BCP group can be considered as the most ancient type among the large family of cryptochrome and photolyase flavoproteins. In contrast to other photolyases, they contain an Fe‐S cluster of unknown function, a DMRL chromophore, an interdomain loop, which could interact with DNA, and a long C‐terminal extension. We compared DNA repair and photoreduction of two members of the FeS‐BCP family, Agrobacterium fabrum PhrB and Rhodobacter sphaeroides RsCryB, with a eukaryotic (6‐4) photolyase from Ostreococcus, OsCPF, and a member of the class III CPD photolyases, PhrA from A. fabrum. We found that the low DNA repair effectivity of FeS‐BCP proteins is largely stimulated by Mg2+ and other divalent cations, whereas no effect of divalent cations was observed in OsCPF and PhrA. The (6‐4) repair activity in the presence of Mg2+ is comparable with the repair activities of the other two photolyases. The photoreduction, on the other hand, is negatively affected by Mg2+ in PhrB, but stimulated by Mg2+ in PhrA. A clear relationship of Mg2+ dependency on DNA repair with the evolutionary position conflicts with Mg2+ dependency of photoreduction. We discuss the Mg2+ effect in the context of structural data and DNA binding.  相似文献   

17.
Photolyases are intriguing enzymes that take advantage of sunlight to restore lesions like cyclobutane pyrimidine dimers or (6‐4) photoproducts. This work focused on the photoreductive process responsible for splitting of the azetidine ring proposed to occur during (6‐4) photoproduct repair at a thymine–cytosine sequence. A model compound formed by photocycloaddition between thymine and 6‐azauracil has been designed to mimic the elusive azetidine intermediate. The photoinduced electron transfer process has been investigated by means of steady‐state and time‐resolved fluorescence using photosensitizers with oxidation potentials in the singlet excited state ranging from ?3.3 to ?2.1 V vs. SCE. Azetidine ring splitting and recovery of “repaired” bases were proven by HPLC analysis.  相似文献   

18.
Methylation of cytosine is a common biological process both in prokaryotic and eukaryotic cells. In addition to 5‐methylcytosine (5mC), some bacterial species contain in their genome N4methylcytosine (N4mC). Methylation at C5 has been shown to enhance the formation of pyrimidine dimeric photoproducts but nothing is known of the effect of N4 methylation on UV‐induced DNA damage. In the present work, we compared the yield and the nature of bipyrimidine photoproducts induced in a series of trinucleotides exhibiting a TXG sequence where X is either T, C, 5mC or N4mC. HPLC associated to tandem mass spectrometry was used to quantify cyclobutane pyrimidine dimers (CPD), (6‐4) photoproducts (64PP) and their Dewar valence isomer. Methylation at position N4 was found to drastically increase the reactivity of C upon exposure to both UVC and UVB and to favor the formation of 64PP. In contrast methylation at C5 increased the yield of CPD at the expense of 64PP. In addition, enhancement of photoreactivity by C5 methylation was much higher in the UVB than in the UVC range. These results show the drastic effect of the methylation site on the photochemistry of cytosine.  相似文献   

19.
DNA光复活作用机理的研究进展*   总被引:11,自引:0,他引:11  
宋钦华  郭庆祥 《化学进展》2001,13(6):428-435
"环丁烷型嘧啶二聚体(Pyr< > Pyr) 是太阳光中紫外线造成DNA 损伤的主要光化学产物。DNA 光复活酶(或称光解酶) 能够利用可见光裂解二聚体的环丁烷环而修复DNA。本文对DNA 光复活过程中的光解酶对Pyr< > Pyr 的识别和光催化Pyr< > Pyr 裂解反应进行了综述, 介绍了DNA 光解酶的结构、DNA 的主要UV 光化学产物。较详尽地评述了国际上在光解酶催化二聚体裂解的途径以及模型研究方面的最新进展, 并预测了该领域的发展前景。  相似文献   

20.
REPAIR OF CYCLOBUTANE DIMERS AND (6–4) PHOTOPRODUCTS IN ICR 2A FROG CELLS   总被引:7,自引:0,他引:7  
Abstract— The removal of cyclobutane dimers and Pyr(6–4)Pyo photoproducts from the DNA of UV-irradiated ICR 2A frog cells was determined by radioimmunoassay. In the absence of photoreactivat-ing light, 15% of the cyclobutane dimers and 60% of the (6–4) photoproducts were removed 24 h post-irradiation with 10 J m−2, Exposure to 30 kJ m−2 photoreactivating light resulted in removal of 80% of the cyclobutane dimers and an enhanced rate of repair of (6–4) photoproducts, resulting in a loss of 50% of these lesions in 3 h. The preferential removal of (6–4) photoproducts by excision repair resembles previously published data for mammalian cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号