首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
This paper presents the design scheme of the indirect adaptive fuzzy observer and controller based on the interval type-2 (IT2) T-S fuzzy model. The nonlinear systems can be well approximated by IT2 T-S fuzzy model, in which the fuzzy rules’ antecedents are interval type-2 fuzzy sets and consequents are linear state equations. The proposed IT2 T-S fuzzy model is a combination of IT2 fuzzy system and T-S fuzzy model, and also inherits the benefits of type-2 fuzzy logic systems, which is able to directly handle uncertainties and can minimize the effects of uncertainties in rule-based fuzzy system. These characteristics can improve the accuracy of the system modeling and reduce the number of system rules. The proposed method using feedback control, adaptive laws, and on-line object parameters are adjusted to ensure observation error bounded. In addition, using Lyapunov synthesis approach and Lipschitz condition, the stability analysis is conducted. The simulation results show that the proposed method can handle unpredicted disturbance and data uncertainties very well in advantage of the effectiveness of observation and control.  相似文献   

2.
In this article, based on sampled‐data approach, a new robust state feedback reliable controller design for a class of Takagi–Sugeno fuzzy systems is presented. Different from the existing fault models for reliable controller, a novel generalized actuator fault model is proposed. In particular, the implemented fault model consists of both linear and nonlinear components. Consequently, by employing input‐delay approach, the sampled‐data system is equivalently transformed into a continuous‐time system with a variable time delay. The main objective is to design a suitable reliable sampled‐data state feedback controller guaranteeing the asymptotic stability of the resulting closed‐loop fuzzy system. For this purpose, using Lyapunov stability theory together with Wirtinger‐based double integral inequality, some new delay‐dependent stabilization conditions in terms of linear matrix inequalities are established to determine the underlying system's stability and to achieve the desired control performance. Finally, to show the advantages and effectiveness of the developed control method, numerical simulations are carried out on two practical models. © 2016 Wiley Periodicals, Inc. Complexity 21: 518–529, 2016  相似文献   

3.
This article investigates the problem of reliable mixed control for discrete‐time interval type‐2 (IT2) fuzzy model‐based systems via static output‐feedback (SOF) control method. The number of fuzzy rules and the membership functions for the SOF controller are different from those for the plant. A sufficient criterion of reliable stability with mixed performance is derived for the closed‐loop system with sensor failure. The SOF controller is designed for two different cases (known sensor failure case and unknown sensor failure case) to guarantee the reliable stability with mixed performance. Moreover, novel criteria are presented to obtain the optical performance for the closed‐loop system. Finally, an example is used to verify the effectiveness of the proposed design scheme. © 2014 Wiley Periodicals, Inc. Complexity 21: 74–88, 2016  相似文献   

4.
This article aims to introduce a projective synchronization approach based on adaptive fuzzy control for a class of perturbed uncertain multivariable nonaffine chaotic systems. The fuzzy‐logic systems are employed to approximate online the uncertain functions. A Lyapunov approach is used to design the parameter adaptation laws and to demonstrate the boundedness of all signals of the closed‐loop system as well as the convergence of the synchronization errors to bounded residual sets. Finally, numerical simulation results are presented to verify the feasibility and effectiveness of the proposed synchronization system based on fuzzy adaptive controller. © 2014 Wiley Periodicals, Inc. Complexity 21: 180–192, 2015  相似文献   

5.
In this article, cluster synchronization problem for Lur'e type Takagi–Sugeno (T–S) fuzzy complex networks with probabilistic time‐varying delays is considered. Pinning control strategy is proposed. The probability distribution of the time‐varying delay is considered. In terms of the probability distribution of the delays, a new type of system model with probability‐distribution‐dependent parameter matrices is proposed. Moreover, probabilistic delay is assumed to satisfy certain probability distribution and the probability of the delay takes values in some intervals. By constructing a suitable Lyapunov–Krasovskii functional involving triple integral terms and using Kronecker product with convex combination technique, some sufficient conditions are derived to ensure the cluster synchronization of designed networks such that the linear feedback controller can be used to every cluster. The problem of controller design is converted into solving a series of linear matrix inequalities. The effectiveness of our results is verified through numerical examples and simulations. © 2014 Wiley Periodicals, Inc. Complexity 21: 59–77, 2015  相似文献   

6.
This article is concerned with the stabilization problem for nonlinear networked control systems which are represented by polynomial fuzzy models. Two communication features including signal transmission delays and data missing are taken into account in a network environment. To solve the network‐induced communication problems, a novel sampled‐data fuzzy controller is designed to guarantee that the closed‐loop system is asymptotically stable. The stability and stabilization conditions are presented in terms of sum of squares (SOS), which can be numerically solved via SOSTOOLS. Finally, a simulation example is provided to demonstrate the feasibility of the proposed method. © 2014 Wiley Periodicals, Inc. Complexity 21: 74–81, 2015  相似文献   

7.
In this article, the problem of reliable gain‐scheduled H performance optimization and controller design for a class of discrete‐time networked control system (NCS) is discussed. The main aim of this work is to design a gain‐scheduled controller, which consists of not only the constant parameters but also the time‐varying parameter such that NCS is asymptotically stable. In particular, the proposed gain‐scheduled controller is not only based on fixed gains but also the measured time‐varying parameter. Further, the result is extended to obtain a robust reliable gain‐scheduled H control by considering both unknown disturbances and linear fractional transformation parametric uncertainties in the system model. By constructing a parameter‐dependent Lyapunov–Krasovskii functional, a new set of sufficient conditions are obtained in terms of linear matrix inequalities (LMIs). The existence conditions for controllers are formulated in the form of LMIs, and the controller design is cast into a convex optimization problem subject to LMI constraints. Finally, a numerical example based on a station‐keeping satellite system is given to demonstrate the effectiveness and applicability of the proposed reliable control law. © 2014 Wiley Periodicals, Inc. Complexity 21: 214–228, 2015  相似文献   

8.
This article presents a new design of robust finite‐time controller which replaces the traditional automatic voltage regulator for excitation control of the third‐order model synchronous generator connected to an infinite bus. The effects of system uncertainties and external noises are fully taken into account. Then a single input robust controller is proposed to regulate the system states to reach the origin in a given finite time. The designed robust finite‐time excitation controller can refine the system behaviors in convergence and robustness against model uncertainties and external disturbances. The robustness and finite‐time stability of the closed‐loop system are analytically proved using the finite‐time control idea and Lyapunov stability theorem. The suitability and robustness of the designed controller are shown in contrast with two other strong nonlinear control strategies. The main advantages of the proposed controller are as follows: a) robustness against system uncertainties and external noises; b) convergence to the equilibrium point in a given finite time; and c) the use of a single control input. © 2015 Wiley Periodicals, Inc. Complexity 21: 203–213, 2016  相似文献   

9.
This article studies the problem of observer‐based dissipative control problem for wireless networked control systems (NCSs). The packet loss and time delay in the network are modeled by a set of switches, using that a discrete‐time switched system is formulated. First, results for the exponential dissipativity of discrete‐time switched system with time‐varying delays are proposed by using the average dwell time approach and multiple Lyapunov–Krasovskii function. Then, the results are extended to drive the controller design for considered wireless NCS. The attention is focused on designing an observer‐based state feedback controller which ensures that, for all network‐induced delay and packet loss, the resulting error system is exponentially stable and strictly dissipative. The sufficient conditions for existence of controllers are formulated in the form of linear matrix inequalities (LMIs), which can be easily solved using some standard numerical packages. Both observer and controller gains can be obtained by the solutions of set of LMIs. Finally, numerical examples are provided to illustrate the applicability and effectiveness of the proposed method. © 2014 Wiley Periodicals, Inc. Complexity 21: 297–308, 2015  相似文献   

10.
In this paper, we propose a fuzzy logic based guaranteed cost controller for trajectory tracking in nonlinear systems. Takagi–Sugeno (T–S) fuzzy model is used to represent the dynamics of a nonlinear system and the controller design is carried out using this fuzzy model. State feedback law is used for building the fuzzy controller whose performance is evaluated using a quadratic cost function. For designing the fuzzy logic based controller which satisfies guaranteed performance, linear matrix inequality (LMI) approach is used. Sufficient conditions are derived in terms of matrix inequalities for minimizing the performance function of the controller. The performance function minimization problem with polynomial matrix inequalities is then transformed into a problem of minimizing a convex performance function involving standard LMIs. This minimization problem can be solved easily and efficiently using the LMI optimization techniques. Our controller design method also ensures that the closed-loop system is asymptotically stable. Simulation study is carried out on a two-link robotic manipulator tracking a reference trajectory. From the results of the simulation study, it is observed that our proposed controller tracks the reference trajectory closely while maintaining a guaranteed minimum cost.  相似文献   

11.
This paper proposes a novel T‐S fuzzy control method instead of the traditional linear system control method to improve the TCP network performance. Thus a TCP network can be modeled as a T‐S fuzzy system, and by use of linear matrix inequality method and cone complementarity linearization algorithm, a fuzzy state feedback controller is provided while considering the problem of the asynchronous membership grades between the controller and the plant. Simulation results are presented to show that the proposed control approach can guarantee the asymptotical stability of the studied system and the desired queue size. © 2016 Wiley Periodicals, Inc. Complexity 21: 606–612, 2016  相似文献   

12.
This article presents a new strategy based on multistage fuzzy PID controller for damping power system stabilizer in multimachine environment using Honey Bee Mating Optimization (HBMO). The proposed technique is a new metaheuristic algorithm which is inspired by mating procedure of the honey bee. Actually, the mentioned algorithm is used recently in power systems which demonstrate the good reflex of this algorithm. Also, finding the parameters of PID controller in power system has direct effect for damping oscillation. Hence, to reduce the design effort and find a better fuzzy system control, the parameters of proposed controller is obtained by HBMO that leads to design controller with simple structure that is easy to implement. The effectiveness of the proposed technique is applied to single machine connected to infinite bus and IEEE 3–9 bus power system. The proposed technique is compared with other techniques through integral of the time multiplied absolute value of the error and figure of demerit. © 2015 Wiley Periodicals, Inc. Complexity 21: 234–245, 2016  相似文献   

13.
In this article, based on the stability theory of fractional‐order systems, chaos synchronization is achieved in the fractional‐order modified Van der Pol–Duffing system via a new linear control approach. A fractional backstepping controller is also designed to achieve chaos synchronization in the proposed system. Takagi‐Sugeno fuzzy models‐based are also presented to achieve chaos synchronization in the fractional‐order modified Van der Pol–Duffing system via linear control technique. Numerical simulations are used to verify the effectiveness of the synchronization schemes. © 2015 Wiley Periodicals, Inc. Complexity 21: 116–124, 2016  相似文献   

14.
In many control engineering applications, it is impossible or expensive to measure all the states of the dynamical system and only the system output is available for controller design. In this study, a new dynamic output feedback control algorithm is proposed to stabilize the unstable periodic orbit of chaotic spinning disks with incomplete state information. The proposed control structure is based on the T‐S fuzzy systems. This investigation also introduces a new design procedure to satisfy a constraint on the T‐S fuzzy dynamic output feedback control signal. This procedure is independent of the exact value of initial states. Finally, computer simulations are accomplished to illustrate the performance of the proposed control algorithm. © 2015 Wiley Periodicals, Inc. Complexity 21: 148–159, 2016  相似文献   

15.
自适应模糊变结构控制的研究   总被引:1,自引:0,他引:1  
本文主要研究一类具有未知常数控制增益的非线性系统的自适应模糊控制问题,提出了一种能够利用专家的语言信息和数字信息的自适应模糊变结构控制器的设计方案。通过理论分析,证明了模糊变结构控制系统是全局稳定的,跟踪误差可收敛到零的一个邻域内  相似文献   

16.
In this article, a new methodology based on fuzzy proportional‐integral‐derivative (PID) controller is proposed to damp low frequency oscillation in multimachine power system where the parameters of proposed controller are optimized offline automatically by hybrid genetic algorithm (GA) and particle swarm optimization (PSO) techniques. This newly proposed method is more efficient because it cope with oscillations and different operating points. In this strategy, the controller is tuned online from the knowledge base and fuzzy interference. In the proposed method, for achieving the desired level of robust performance exact tuning of rule base and membership functions (MF) are very important. The motivation for using the GA and PSO as a hybrid method are to reduce fuzzy effort and take large parametric uncertainties in to account. This newly developed control strategy mixed the advantage of GA and PSO techniques to optimally tune the rule base and MF parameters of fuzzy controller that leads to a flexible controller with simple structure while is easy to implement. The proposed method is tested on three machine nine buses and 16 machine power systems with different operating conditions in present of disturbance and nonlinearity. The effectiveness of proposed controller is compared with robust PSS that tune using PSO and the fuzzy controller which is optimized rule base by GA through figure of demerit and integral of the time multiplied absolute value of the error performance indices. The results evaluation shows that the proposed method achieves good robust performance for a wide range of load change in the presents of disturbance and system nonlinearities and is superior to the other controllers. © 2014 Wiley Periodicals, Inc. Complexity 21: 78–93, 2015  相似文献   

17.
In this paper, the robust stabilization problem is investigated for a class of nonlinear discrete-time networked control systems (NCSs). To study the system stability and facilitate the design of fuzzy controller, Takagi–Sugeno (T–S) fuzzy models are employed to represent the system dynamics of the nonlinear discrete-time NCSs with effects of the approximation errors taken into account, and a unified model of NCSs in the T–S fuzzy model is proposed by modeling the approximation errors as norm-bounded uncertainties in system metrics, where non-ideal network Quality of Services (QoS), such as data dropout and network-induced delay, are coupled in a unified framework. Then, based on the Lyapunov–Krasovskii functional, sufficient conditions are derived for the existence of a fuzzy controller. By these criteria, two approaches to design a fuzzy controller are developed in terms of linear matrix inequalities (LMIs). Finally, illustrative examples are provided to show the effectiveness of the proposed methods.  相似文献   

18.
A new problem of adaptive type-2 fuzzy fractional control with pseudo-state observer for commensurate fractional order dynamic systems with dead-zone input nonlinearity is considered in presence of unmatched disturbances and model uncertainties; the control scheme is constructed by using the backstepping and adaptive technique. To avoid the complexity of backstepping design process, the dynamic surface control is used. Also, Interval type-2 Fuzzy logic systems (IT2FLS) are used to approximate the unknown nonlinear functions. By using the fractional adaptive backstepping, fractional control laws are constructed; this method is applied to a class of uncertain fractional-order nonlinear systems. In order to better control performance in reducing tracking error, the PSO algorithm is utilized for tuning the controller parameters. Stability of the system is proven by the Mittag–Leffler method. It is shown that the proposed controller guarantees the boundedness property for the system and also the tracking error can converge to a small neighborhood of the origin. The efficiency of the proposed method is illustrated with simulation examples.  相似文献   

19.
In this article, an adaptive fuzzy output tracking control approach is proposed for a class of multiple‐input and multiple‐output uncertain switched nonlinear systems with unknown control directions and under arbitrary switchings. In the control design, fuzzy logic systems are used to identify the unknown switched nonlinear systems. A Nussbaum gain function is introduced into the control design and the unknown control direction problem is solved. Under the framework of the backstepping control design, fuzzy adaptive control and common Lyapunov function stability theory, a new adaptive fuzzy output tracking control method is developed. It is proved that the proposed control approach can guarantee that all the signals in the closed‐loop system are bounded and the tracking error remains an adjustable neighborhood of the origin. A numerical example is provided to illustrate the effectiveness of the proposed approach. © 2015 Wiley Periodicals, Inc. Complexity 21: 155–166, 2016  相似文献   

20.
This article focuses on the robust reliable dissipative control issue for a class of switched discrete‐time nonlinear networked control systems with external energy bounded disturbances. In particular, nonlinearities are modeled in a probabilistic way according to Bernoulli distributed white sequence with known conditional probability. A Lyapunov–Krasovskii functional is proposed based on which sufficient conditions for the existence of the reliable dissipative controller are derived in terms of linear matrix inequalities (LMIs) which ensures exponentially stability as well as dissipative performance of the resulting closed‐loop system. The explicit expression of the desired controller gains can be obtained by solving the established LMIs. Finally, a numerical example is presented to demonstrate the effectiveness and applicability of the proposed design strategy. © 2016 Wiley Periodicals, Inc. Complexity 21: 427–437, 2016  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号