首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This article addresses the issue of robust sampled‐data control for a class of uncertain mechanical systems with input delays and linear fractional uncertainties which appear in all the mass, damping, and stiffness matrices. Then, a novel Lyapunov–Krasovskii functional is constructed to obtain sufficient conditions under which the uncertain mechanical system is robustly, asymptotically stable with disturbance attenuation level about its equilibrium point for all admissible uncertainties. More precisely, Schur complement and Jenson's integral inequality are utilized to substantially simplify the derivation of the main results. In particular, a set of sampled‐data controller is designed in terms of the solution of certain linear matrix inequalities that can be solved effectively using available MATLAB software. Finally, a numerical example with simulation result is provided to show the effectiveness and less conservativeness of the proposed sampled‐data control scheme. © 2014 Wiley Periodicals, Inc. Complexity 20: 19–29, 2015  相似文献   

2.
Lei Su  Hao Shen 《Complexity》2016,21(6):246-259
This article is concerned with the fault‐tolerant mixed /passive synchronization problem for chaotic neural networks by sampled‐data control scheme. The objective is focused on the design of a reliable controller such that the mixed /passivity performance level of the resulting synchronization error system is ensured in the presence of actuator failures. A time‐dependent Lyapunov functional and an improved reciprocally convex approach combined with a novel integral inequality are applied to optimize the availability of the information on the actual sampling pattern. Then, some sufficient conditions of mixed /passivity performance analysis for the synchronization error systems are derived. A desired reliable sampled‐data controller is designed by solving the optimization problems. Finally, to demonstrate the effectiveness of the proposed method, a practical chaotic neural networks is provided. © 2015 Wiley Periodicals, Inc. Complexity 21: 246–259, 2016  相似文献   

3.
Synergy is often defined as the creation of a whole that is greater than the sum of its parts. It is found at all levels of organization in physics, chemistry, biology, social sciences, and the arts. Synergy occurs in open irreversible thermodynamic systems making it difficult to quantify. Negative entropy or negentropy ( ) has been related to order and complexity, and so has work efficiency, information content, Gibbs Free Energy in equilibrium thermodynamics, and useful work efficiency in general ( ). To define synergy in thermodynamic terms, we use the quantitative estimates of changes in and in seven different systems that suffer process described as synergistic. The results show that synergistic processes are characterized by an increase in coupled to an increase in . Processes not associated to synergy show a different pattern. The opposite of synergy are dissipative processes such as combustion where both and decrease. The synergistic processes studied showed a relatively greater increase in compared to opening ways to quantify energy—or information—dissipation due to the second law of thermodynamics in open irreversible systems. As a result, we propose a precise thermodynamic definition of synergy and show the potential of thermodynamic measurements in identifying, classifying and analysing in detail synergistic processes. © 2016 Wiley Periodicals, Inc. Complexity 21: 235–242, 2016  相似文献   

4.
This article investigates the problem of reliable mixed control for discrete‐time interval type‐2 (IT2) fuzzy model‐based systems via static output‐feedback (SOF) control method. The number of fuzzy rules and the membership functions for the SOF controller are different from those for the plant. A sufficient criterion of reliable stability with mixed performance is derived for the closed‐loop system with sensor failure. The SOF controller is designed for two different cases (known sensor failure case and unknown sensor failure case) to guarantee the reliable stability with mixed performance. Moreover, novel criteria are presented to obtain the optical performance for the closed‐loop system. Finally, an example is used to verify the effectiveness of the proposed design scheme. © 2014 Wiley Periodicals, Inc. Complexity 21: 74–88, 2016  相似文献   

5.
This article addresses the problem of fault‐tolerant sampled‐data mixed and passivity control for a class of stochastic system with actuator failures, where the plant is modeled as a continuous‐time one and the control inputs are implemented as discrete‐time signals. Sufficient conditions for the reliable sampled‐data mixed and passivity performance control law is established for the considered systems by constructing an appropriate Lyapunov–Krasovskii functional together with the Newton–Leibniz formula and free‐weighting matrix technique. More precisely, linear matrix inequality based sampled‐data methodology is employed to design the mixed and passivity formation controller to reject the impact of the formation changes being treated as disturbances. Simulation studies are performed based on the flight control model to verify the stability, performance, and effectiveness of the proposed design strategy. © 2015 Wiley Periodicals, Inc. Complexity 21: 420–429, 2016  相似文献   

6.
Ping He  Yangmin Li 《Complexity》2016,21(Z2):42-53
The reaction‐diffusion neural network is often described by semilinear diffusion partial differential equation (PDE). This article focuses on the asymptotical synchronization and synchronization for coupled reaction‐diffusion neural networks with mixed delays (that is, discrete and infinite distributed delays) and Dirichlet boundary condition. First, using the Lyapunov–Krasoviskii functional scheme, the sufficient condition is obtained for the asymptotical synchronization of coupled semilinear diffusion PDEs with mixed time‐delays and this condition is represented by linear matrix inequalities (LMIs), which is easy to be solved. Then the robust synchronization is considered in temporal‐spatial domain for the coupled semilinear diffusion PDEs with mixed delays and external disturbances. In terms of the technique of completing squares, the sufficient condition is obtained for the robust synchronization. Finally, a numerical example of coupled semilinear diffusion PDEs with mixed time‐delays is given to illustrate the correctness of the obtained results. © 2016 Wiley Periodicals, Inc. Complexity 21: 42–53, 2016  相似文献   

7.
In this article, synchronization problem of master–slave system with phase‐type semi‐Markovian switching is investigated via sliding mode control scheme. By utilizing a supplementary variable technique and a plant transformation, the master–slave semi‐Markovian switching system can be equivalently expressed as its associated Markovian switching system. Then an integral sliding surface is constructed to guarantee stochastic synchronization of master–slave semi‐Markovian switching system, and the suitable controller is synthesized to ensure that the trajectory of the closed‐loop error system can be driven onto the prescribed sliding mode surface. Finally, numerical simulations are presented to show the effectiveness of the proposed sliding‐mode design scheme. © 2015 Wiley Periodicals, Inc. Complexity 21: 430–441, 2016  相似文献   

8.
This article is concerned with the nonfragile filtering for wireless‐networked systems with energy constraint. To achieve the energy‐efficient goal, the local measurement is first sampled by nonuniform sampling, then we only choose one measurement to transmit it to the remote filter. In the filter design, the random occurring filter gain variation problem is taken into account. A new stochastic switched system model is presented to capture the nonuniform sampling, the measurement size reduction, and the random filter gain phenomena. Based on the switched system approach, stochastic system analysis, and Lyapunov stability theory, a sufficient condition is presented such that the filtering error system is exponentially stable in the mean‐square sense and a prescribed performance level is also guaranteed. The effectiveness of the proposed new method is illustrated by a simulation example. © 2015 Wiley Periodicals, Inc. Complexity 21: 79–89, 2016  相似文献   

9.
This article investigates the control problem for polynomial fuzzy discrete‐time systems. Signal quantization is considered in this article. To deal with this issue, a logarithmic quantizer is adopted to quantize the control signal. First, a novel method is first proposed to model polynomial fuzzy discrete‐time systems and handle the quantized control problem of the systems. Second, based on Lyapunov‐stability theory, sufficient conditions are obtained in terms of sum of squares to guarantee the asymptotical stability of the systems and satisfy a performance. Finally, a simulation example is given to illustrate the effectiveness of the proposed results. © 2014 Wiley Periodicals, Inc. Complexity 21: 325–332, 2015  相似文献   

10.
An exploratory study is made on the dynamics of the map defining the Mandelbrot set endowed with memory (m) of past iterations, that is, , . © 2014 Wiley Periodicals, Inc. Complexity 21: 84–96, 2016  相似文献   

11.
Let satisfy that , for any given , is an Orlicz function and is a Muckenhoupt weight uniformly in . In this article, the authors introduce the weak Musielak–Orlicz Hardy space via the grand maximal function and then obtain its vertical or its non–tangential maximal function characterizations. The authors also establish other real‐variable characterizations of , respectively, in terms of the atom, the molecule, the Lusin area function, the Littlewood–Paley g‐function or ‐function. All these characterizations for weighted weak Hardy spaces (namely, and with and ) are new and part of these characterizations even for weak Hardy spaces (namely, and with ) are also new. As an application, the boundedness of Calderón–Zygmund operators from to in the critical case is presented.  相似文献   

12.
This article is concerned with the problem of finite‐time synchronization control for a class of discrete‐time nonlinear chaotic systems under unreliable communication links. Our aim is to design a delayed feedback controller such that the resulting synchronization error system is stochastically finite‐time bounded with a guaranteed performance level over a finite time interval. Some sufficient conditions for the solvability of the above problem are established. A delayed feedback control scheme involving constrained information about the past state is presented. Finally, the Fold chaotic system is used to demonstrate the effectiveness of our proposed approach. © 2014 Wiley Periodicals, Inc. Complexity 21: 138–146, 2015  相似文献   

13.
Gutman and Wagner proposed the concept of matching energy (ME) and pointed out that the chemical applications of ME go back to the 1970s. Let G be a simple graph of order n and be the roots of its matching polynomial. The ME of G is defined to be the sum of the absolute values of . In this article, we characterize the graphs with minimal ME among all unicyclic and bicyclic graphs with a given diameter d. © 2014 Wiley Periodicals, Inc. Complexity 21: 224–238, 2015  相似文献   

14.
In this paper, by employing linear algebra methods we obtain the following main results:
  • (i) Let and be two disjoint subsets of such that Suppose that is a family of subsets of such that for every pair and for every i. Then Furthermore, we extend this theorem to k‐wise L‐intersecting and obtain the corresponding result on two cross L‐intersecting families. These results show that Snevily's conjectures proposed by Snevily (2003) are true under some restricted conditions. This result also gets an improvement of a theorem of Liu and Hwang (2013).
  • (ii) Let p be a prime and let and be two subsets of such that or and Suppose that is a family of subsets of [n] such that (1) for every pair (2) for every i. Then This result improves the existing upper bound substantially.
  相似文献   

15.
Using the general formalism of 12 , a study of index theory for non‐Fredholm operators was initiated in 9 . Natural examples arise from (1 + 1)‐dimensional differential operators using the model operator in of the type , where , and the family of self‐adjoint operators in studied here is explicitly given by Here has to be integrable on and tends to zero as and to 1 as (both functions are subject to additional hypotheses). In particular, , , has asymptotes (in the norm resolvent sense) as , respectively. The interesting feature is that violates the relative trace class condition introduced in 9 , Hypothesis 2.1 ]. A new approach adapted to differential operators of this kind is given here using an approximation technique. The approximants do fit the framework of 9 enabling the following results to be obtained. Introducing , , we recall that the resolvent regularized Witten index of , denoted by , is defined by whenever this limit exists. In the concrete example at hand, we prove Here denotes the spectral shift operator for the pair of self‐adjoint operators , and we employ the normalization, , .  相似文献   

16.
In this paper, we consider an initial‐value problem for Burgers' equation with variable coefficients where x and t represent dimensionless distance and time, respectively, and , are given functions of t. In particular, we consider the case when the initial data have algebraic decay as , with as and as . The constant states and are problem parameters. Two specific initial‐value problems are considered. In initial‐value problem 1 we consider the case when and , while in initial‐value problem 2 we consider the case when and . The method of matched asymptotic coordinate expansions is used to obtain the large‐t asymptotic structure of the solution to both initial‐value problems over all parameter values.  相似文献   

17.
Let be a nontrivial 2‐ symmetric design admitting a flag‐transitive, point‐primitive automorphism group G of almost simple type with sporadic socle. We prove that there are up to isomorphism six designs, and must be one of the following: a 2‐(144, 66, 30) design with or , a 2‐(176, 50, 14) design with , a 2‐(176, 126, 90) design with or , or a 2‐(14,080, 12,636, 11,340) design with .  相似文献   

18.
Kati Ain  Eve Oja 《Mathematische Nachrichten》2015,288(14-15):1569-1580
Let and , where is the conjugate index of p. We prove an omnibus theorem, which provides numerous equivalences for a sequence in a Banach space X to be a ‐null sequence. One of them is that is ‐null if and only if is null and relatively ‐compact. This equivalence is known in the “limit” case when , the case of the p‐null sequence and p‐compactness. Our approach is more direct and easier than those applied for the proof of the latter result. We apply it also to characterize the unconditional and weak versions of ‐null sequences.  相似文献   

19.
Opinion dynamics under the influence of the contrarian deterministic effect and human mobility on the two‐dimensional lattice is studied. In the model, the opinion is a binary variable and some shortcuts are added with the adding probability Ps. At each time step, each agent with shortcuts is chosen as the mobile one with the mobility probability Pm and moves to one of his immobile neighbors along shortcuts randomly. Then, the immobile agents update their opinions based on the majority rule with pf, which is the Fermi function of the interaction noise T due to the contrarian deterministic effect. We find that some appropriate interaction noise T enhances the formation of community around Tc. And human mobility enhances the formation of community when , where Tc is equal to the average degree and independent of the network size N and the mobility probability Pm through the theoretical and numerical analysis. Furthermore, we also find that the system with larger degree and the self‐feedback of agent have stronger robustness in the opinion formation with the contrarian deterministic effect. © 2014 Wiley Periodicals, Inc. Complexity 20: 43–49, 2015  相似文献   

20.
We present an approximation algorithm for ‐instances of the travelling salesman problem which performs well with respect to combinatorial dominance. More precisely, we give a polynomial‐time algorithm which has domination ratio . In other words, given a ‐edge‐weighting of the complete graph on vertices, our algorithm outputs a Hamilton cycle of with the following property: the proportion of Hamilton cycles of whose weight is smaller than that of is at most . Our analysis is based on a martingale approach. Previously, the best result in this direction was a polynomial‐time algorithm with domination ratio for arbitrary edge‐weights. We also prove a hardness result showing that, if the Exponential Time Hypothesis holds, there exists a constant such that cannot be replaced by in the result above. © 2015 Wiley Periodicals, Inc. Random Struct. Alg., 48, 427–453, 2016  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号